Matematyka GIMNAZJUM KLASA 1 ul. Grochowska 341/ 268 03 – 822 Warszawa tel. (0-22) 741 26 80 fax. (0-22) 741 26 81 21. Punkt O jest środkiem okręgu o promieniu długości 5 cm. Długość łuku okręgu pomiędzy punktami A i B jest równa 10cm Matematyka 2004 1 ACB 2 b) 56 0 ACB 59 0 a) AOB GIMNAZJUM KLASA 1 c) 610 ACB 65 0 22. Równanie 6a(x 6) 2x 6(x 9) ( x jest niewiadomą, a jest parametrem) a) dla pewnej wartości parametru a jest tożsamościowe b) dla pewnej wartości parametru a jest sprzeczne c) dla pewnej wartości parametru a ma dokładnie jedno rozwiązanie 23. Suma trzech kolejnych liczb pierwszych jest równa 41 a) wszystkie trzy liczby pierwsze są mniejsze od 15 b) wszystkie trzy liczby pierwsze są mniejsze od 20 c) wszystkie trzy liczby pierwsze są mniejsze od 25 24. W pewnym trójkącie o bokach a, b, c, gdzie c jest najdłuższym bokiem zachodzi nierówność a + b > c. Wynika stąd, że: a) trójkąt jest prostokątny b) trójkąt jest równoramienny c) trójkąt jest ostrokątny 25. Zaznacz twierdzenia, do których twierdzenia odwrotne są prawdziwe: a) jeżeli liczba naturalna jest podzielna przez 2, to jest podzielna przez 4 b) jeżeli liczba naturalna jest podzielna przez 2 to jest większa od 7 c) jeżeli kwadrat liczby całkowitej jest mniejszy od 60, to liczba ta jest mniejsza od 8 26. Suma dwóch liczb dodatnich wynosi 57. Jeżeli podzielimy jedną liczbę przez drugą to otrzymamy wynik 10 i resztę 2 a) różnica tych liczb wynosi 47 b) iloczyn tych liczb wynosi 250 c) nie ma takich liczb 27. W których czworokątach przekątne przecinają się pod kątem prostym? a) w rombie b) w prostokącie c) w deltoidzie 1 1 1 1 1 28. Liczba 1 2 3 4 5 6 1 a) jest większa od 2 b) jest całkowita c) jest równa 2,45 2 29. Jeśli punkt O1 jest środkiem jednego okręgu, punkt O2 środkiem drugiego, a r O1O 2 długością ich wspólnego promienia, to pole zakreskowanej figury: 1 2 a) jest równe r 2 3 2 3 1 1 c) jest równe r 2 3 12 4 30. Równanie 7 7 x 5 343 a) ma rozwiązanie będące liczbą całkowitą b) ma rozwiązanie będące liczbą parzystą c) ma rozwiązanie będące liczbą pierwszą 1 1 b) jest równe r 2 3 36 2 Drogi uczestniku! Przewidziany czas na olimpiadę z matematyki to 65 minut. Życzymy powodzenia!!! 1. Promień r okręgu wpisanego w przedstawiony na rysunku trójkąt prostokątny ma długość: C ab a) abc a b abc b) r 2 2 2 a b c) A c B c 2. Jeśli a jest pewną liczba całkowitą, zaś b = 3a to liczba a 2 b 2 a) jest podzielna przez 3 b) jest podzielna przez 5 c) jest podzielna przez 2 5 7x 4 15 xy 4 y 6 ma dla x = 2,1 i y = 3 wartość: 3. Wyrażenie 3 7 4 x y 0,235 2 5 a) niewymierną b) równą z dokładnością do części całkowitych 35 c) równą 35,278666… 2 x 3 1 4. Równanie: (7a 8)x 6 2 a) ma rozwiązanie dla każdej wartości parametru a b) ma rozwiązanie dla każdej wymiernej wartości parametru a c) ma rozwiązanie dla każdej wartości parametru a większej niż 2,53 5. Suma czterech kolejnych liczb nieparzystych jest równa 120. Wynika stąd, że: a) co najmniej jedna z tych liczb jest liczbą pierwszą b) dokładnie jedna z tych liczb jest liczba pierwszą c) dokładnie jedna z tych liczb jest sześcianem liczby całkowitej 6. Mamy dane dwa okręgi: pierwszy o środku w punkcie O1 i promieniu długości r1 i drugi, o środku w punkcie O2 i promieniu długości r2. Jeśli r1 r2 O1O 2 r1 r2 to: a) okręgi przecinają się b) jeden okrąg leży wewnątrz drugiego c) okręgi leżą na zewnątrz siebie Matematyka ul. Grochowska 341/ 268 03 – 822 Warszawa tel. (0-22) 741 26 80 fax. (0-22) 741 26 81 GIMNAZJUM KLASA 1 12. Proste a i b są równoległe. 7. Który z grafów przedstawia funkcję? a) AB 2 CD 49 a) c) 3 CD 2 3 c) AB CD 2 3 13. Równanie x 7,12 3,14 5 a) ma dwa rozwiązania dodatnie b) ma rozwiązanie należące do przedziału (10, 20) c) ma dokładnie jedno rozwiązanie b) ma rozwiązanie dodatnie 2 c) ma rozwiązanie większe niż 5 3 14. Dla którego z zaznaczonych na osi liczbowej zbiorów nierówności: 8 4 x5 3 2 50 23 3 125 x oraz 263x 2 2 3 x 50 0 3 3 będą spełnione równocześnie w więcej niż jednym punkcie? 7 8 5 1 b) AB 64 25 1 76 9 b) 2 7 x 5 2x 4,25 7 3 8. Równanie 5 1 30 7 2 a) ma rozwiązanie będące liczbą całkowitą 9. Punkt O jest środkiem okręgu: Miara kąta BCD jest: a) większa niż 900 b) większa niż 1000 c) większa niż 1200 10. Funkcja określona za pomocą wykresu: a) ma nieujemne miejsce zerowe , ,4 2 3 1 1 1 1 1 c) ma zbiór wartości, w którym zawiera się zbiór 1 ,1, ,0, ,1,1 ,2,2 2 2 2 2 2 b) ma dziedzinę, w której zawiera się zbiór 3,2 2, 0, 11. Producent A podniósł w styczniu cenę swoich wyrobów o 5%, w lutym o 10%, w marcu i kwietniu o 5% a w maju o 15%.Producent B w styczniu nie zrobił żadnych podwyżek, w lutym podniósł cenę swojego wyrobu o 20%, a w marcu, kwietniu i maju o 3% a) jeden z producentów w czasie od stycznia do maja podniósł cenę łącznie o ponad 30%, a drugi o mniej niż 30% b) jeden z producentów w czasie od stycznia do maja podniósł cenę łącznie o ponad 40%, a drugi o mniej niż 40% c) jeden z producentów w czasie od stycznia do maja podniósł cenę łącznie o ponad 45% a) -1 0 1 2 3 b) -1 0 1 2 3 1 0 2 3 -1 c) 15. Pole czworokąta ABCD, gdzie A=(-2, -6), B=(-1,-1), C=(2, 2), D=(4,0) jest równe: a) 16 b) 18 c) 25 16. Funkcja f każdej liczbie naturalnej n przyporządkowuje resztę z dzielenia n przez 7 a) zbiór wartości funkcji f jest sześcioelementowy b) istnieje taka liczba naturalna n, że n>10, n<15 i f(n)=0 c) istnieje taka liczba naturalna n, że n>10, n<15 i f(n) =1 17. Liczba 0,3(8) 7 a) jest większa niż b) jest większa niż 2 0,19(4) c) jest większa niż 0,074 10 19 18. W trójkącie prostokątnym miara jednego z kątów ostrych jest o 22,5o większa od miary drugiego kąta ostrego. a) wszystkie kąty w tym trójkącie mają miarę większą niż 33o b) jeden z kątów ostrych ma miarę większą niż 55o c) jeden z kątów ostrych ma miarę mniejszą niż 25o 19. Liczba 75 a) jest czterocyfrowa b) jest większa niż 47 c) jest większa niż 57 2 20. Równanie ax bx , gdzie x jest niewiadomą zaś a i b to parametry 6 a) dla pewnych wartości a i b jest sprzeczne b) dla pewnych wartości a i b ma nieskończenie wiele rozwiązań c) dla pewnych wartości a i b ma rozwiązanie będące liczbą całkowitą