Matematyka I - sem.2

advertisement
Załącznik nr 9
do Zarządzenia Rektora ATH Nr 514/2011/2012z dnia 14 grudnia 2011 r.
Druk DNiSS nr PK_IIIF
OPIS MODUŁU KSZTAŁCENIA
NAZWA PRZEDMIOTU/MODUŁU KSZTAŁCENIA: MATEMATYKA
Kod przedmiotu:……………………………………………………………………………….
Rodzaj przedmiotu: podstawowy; obowiązkowy
Wydział: Nauk o Materiałach i Środowisku
Kierunek: Inżynieria Środowiska
Specjalność (specjalizacja): wszystkie
Poziom studiów: pierwszego stopnia
Profil studiów: ogólnoakademicki
Forma studiów: zaoczne
Rok: I
Semestr: II
Formy zajęć i liczba godzin: wykłady – 18; ćwiczenia audytoryjne – 18
Język/i, w którym/ch realizowane są zajęcia: polski
Liczba punktów ECTS: 6
Osoby prowadzące:
wykład: dr Celina Rom
inne formy zajęć: dr Celina Rom, dr Jolanta Okrzesik
1. Założenia i cele przedmiotu:
Zapoznanie się z podstawowymi pojęciami z zakresu analizy matematycznej i algebry wraz z
ich zastosowaniami w naukach przyrodniczych i technicznych, podniesienie poziomu
sprawności rachunkowej, umiejętność interpretacji otrzymanych wyników.
2. Określenie przedmiotów wprowadzających wraz z wymaganiami wstępnymi:
Matematyka w zakresie szkoły średniej i semestru pierwszego.
1
3. Opis form zajęć
a) Wykłady
 Treści programowe (tematyka zajęć):
1. Rachunek całkowy funkcji jednej zmiennej: definicja, własności oraz interpretacja
geometryczna całki oznaczonej, związek między całką oznaczoną a nieoznaczoną,
twierdzenia o wartości średniej, całki niewłaściwe, zastosowanie geometryczne całki
oznaczonej. ( 4 godziny)
2. Liczby zespolone: określenie zbioru liczb zespolonych, działania w zbiorze liczb
zespolonych, interpretacja geometryczna liczby zespolonej, postać kartezjańska i
geometryczna liczby zespolonej, potęgowanie i pierwiastkowanie liczby zespolonej, postać
wykładnicza liczby zespolonej. ( 3 godziny)
3. Elementy algebry liniowej: macierze, wyznaczniki, układy równań linowych. ( 4 godziny)
4. Przekształcenia liniowe, wartości i wektory własne, diagonalizacja macierzy. ( 3 godziny)
5. Rachunek różniczkowy funkcji wielu zmiennych: granica, ciągłość, pochodne cząstkowe
i ekstrema funkcji wielu zmiennych. Funkcje uwikłane. Zastosowania rachunku
różniczkowego do rozwiązywania problemów ekstremalnych w technice. ( 4 godziny)
 Metody dydaktyczne:
Wykład klasyczny uzupełniony prezentacją i materiałami pomocniczymi.
 Forma i warunki zaliczenia:
Uzyskanie 50% punktów z egzaminu.
 Wykaz literatury podstawowej i uzupełniającej (maksymalnie 5 pozycji w każdej grupie):
LITERATURA PODSTAWOWA
1. T. Zgraja, Matematyka dla studentów Wydziału Nauk o Materiałach i Środowisku. Część II,
(w przygotowaniu).
LITERATURA UZUPEŁNIAJĄCA
1. K. Dobrowolska, W. Dyczka, H. Jakuszenkow, Matematyka dla studentów studiów
technicznych. 2, HELPMATH, Łódź 1995.
2. J. Ger, Kurs matematyki dla chemików, Skrypty Uniwersytetu Śląskiego nr 516,
Wydawnictwo Uniwersytetu Śląskiego, Katowice 1996.
3. R. Leitner, Zarys matematyki wyższej dla studentów. Część I, II, WNT, Warszawa 1994.
4. Matematyka dla studentów politechnik: M. Gewert, Z. Skoczylas, Analiza matematyczna 2,
T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1,2, Oficyna Wydawnicza GiS, Wrocław 2002.
5. D. McQuarrie, Matematyka dla przyrodników i inżynierów. 1, 2, PWN, Warszawa 2005.
2
b) Ćwiczenia audytoryjne
 Treści programowe (tematyka zajęć):
1. Rachunek całkowy funkcji jednej zmiennej. ( 2 godziny)
2. Liczby zespolone. ( 2 godziny)
3. Elementy algebry liniowej. ( 3 godziny)
4. Kolokwium. (2 godziny)
5. Przekształcenia liniowe, wektory i wartości własne, diagonalizacja macierzy. ( 3 godziny)
6. Elementy rachunku różniczkowego funkcji wielu zmiennych. ( 4 godziny)
7. Kolokwium. (2 godziny)
 Metody dydaktyczne:
Rozwiązywanie zadań zarówno przez prowadzącego, jak i uczestników.
 Forma i warunki zaliczenia:
Uzyskanie 50% punktów z kolokwiów i 80% obecności na ćwiczeniach.
 Wykaz literatury podstawowej i uzupełniającej (maksymalnie 5 pozycji w każdej grupie):
LITERATURA PODSTAWOWA
1. Ćwiczenia z analizy matematycznej z zastosowaniami. I, II, Praca zbiorowa pod redakcją
L. Siewierskiego, Warszawa 1979.
2. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach. I, II, PWN, Warszawa
1994.
3. R. Leitner, W. Matuszewski, Z. Rojek, Zadania z matematyki wyższej. I, II, WNT,
Warszawa 1994 (I), 1999 (II).
LITERATURA UZUPEŁNIAJĄCA
1. Matematyka dla studentów politechnik: M. Gewert, Z. Skoczylas, Analiza matematyczna 2,
T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1,2, Oficyna Wydawnicza GiS, Wrocław 2002.
3
4. Opis sposobu wyznaczania punktów ECTS
Uczestniczenie w zajęciach kontaktowych – 36 godzin (w tym: wykłady – 18 godzin,
ćwiczenia audytoryjne – 18 godzin)
Przygotowanie bieżące do ćwiczeń – 48 godzin.
Przygotowanie do kolokwiów – 48 godzin.
Przygotowanie do egzaminu – 48 godzin.
Razem 180 godzin. Odpowiada to 6 punktom ECTS.
5. Wskaźniki sumaryczne
a) liczba godzin dydaktycznych (tzw. kontaktowych) i liczba punktów ECTS na zajęciach
wymagających bezpośredniego udziału nauczycieli akademickich, realizowanych w formie
studiów stacjonarnych i niestacjonarnych
Uczestniczenie w wykładach – 18 godzin.
Uczestniczenie w ćwiczeniach audytoryjnych – 18 godzin.
Razem 36 godzin. Odpowiada to 1 punktom ECTS.
b) liczba godzin dydaktycznych (tzw. kontaktowych) i liczba punktów ECTS na zajęciach o
charakterze praktycznym
Uczestniczenie w ćwiczeniach audytoryjnych – 18 godzin.
Przygotowanie bieżące do ćwiczeń – 48 godzin.
Przygotowanie do kolokwiów – 48 godzin.
Przygotowanie do egzaminu – 48 godzin.
Razem 162 godzin. Odpowiada to 5 punktom ECTS.
4
6. Zakładane efekty kształcenia
Numer
(Symbol)
P_W01
P_W02
Efekty kształcenia dla przedmiotu
WIEDZA
Ma uporządkowaną wiedzę w zakresie algebry, w
szczególności:
- liczb zespolonych,
- algebry liniowej,
Ma uporządkowaną wiedzę w zakresie analizy
matematycznej, w szczególności:
- rachunku różniczkowego funkcji dwóch i trzech
zmiennych oraz jego zastosowań,
Odniesienie
do efektów
kształcenia
dla kierunku
Odniesienie
do efektów
kształcenia
dla obszaru
T1A_W01
T1A_W01
.
P_U01
UMIEJĘTNOŚCI
Potrafi wykorzystać poznane metody i modele
matematyczne do analizy podstawowych zagadnień
fizycznych i technicznych, w szczególności:
- umie korzystać z rachunku macierzowego,
rozwiązywać układy równań liniowych,
- umie korzystać z rachunku różniczkowego funkcji
dwóch i trzech zmiennych w celu rozwiązywania
zadań optymalizacyjnych,
5
T1A_U01
T1A_U05
7. Odniesienie efektów kształcenia do form zajęć i sposób oceny osiągnięcia przez
studenta efektów kształcenia
Numer
(Symbol)
P_W01
P_W02
P_U01
Efekty kształcenia dla przedmiotu
WIEDZA
Ma uporządkowaną wiedzę w zakresie algebry, w
szczególności:
- liczb zespolonych,
- algebry liniowej,
Ma uporządkowaną wiedzę w zakresie analizy
matematycznej, w szczególności:
- rachunku różniczkowego funkcji dwóch i trzech
zmiennych oraz jego zastosowań,
UMIEJĘTNOŚCI
Potrafi wykorzystać poznane metody i modele
matematyczne do analizy podstawowych zagadnień
fizycznych i technicznych, w szczególności:
- umie korzystać z rachunku macierzowego,
rozwiązywać układy równań liniowych,
- umie korzystać z rachunku różniczkowego funkcji
dwóch i trzech zmiennych w celu rozwiązywania
zadań optymalizacyjnych,
6
Odniesienie
do form zajęć
Wykłady,
ćwiczenia
Wykłady,
ćwiczenia
Wykłady,
ćwiczenia
Sposób oceny
Egzaminy,
kolokwia,
odpowiedzi
ustne, prace
domowe
Egzaminy,
kolokwia,
odpowiedzi
ustne, prace
domowe
Egzaminy,
kolokwia,
odpowiedzi
ustne, prace
domowe
Download
Random flashcards
123

2 Cards oauth2_google_0a87d737-559d-4799-9194-d76e8d2e5390

bvbzbx

2 Cards oauth2_google_e1804830-50f6-410f-8885-745c7a100970

Motywacja w zzl

3 Cards ypy

66+6+6+

2 Cards basiek49

Pomiary elektr

2 Cards m.duchnowski

Create flashcards