Metody optymalizacji – metody badań operacyjnych 1 Badania Operacyjne (Operations Research, Management Science) • Badania Operacyjne (BO) należą do matematycznych nauk interdyscyplinarnych zajmujących się efektywnym wykorzystaniem środków przez różnego typu organizacje. • Istotne znaczenie w BO ma interakcja pomiędzy człowiekiem a technologią – nacisk na praktyczne zastosowania metod matematycznych. 2 Badania operacyjne – zakres metod BO korzystają z narzędzi, m.in.: • Rachunku prawdopodobieństwa, • Statystyki, • Ekonometrii, • Metod optymalizacji, • Teorii podejmowania decyzji i teorii gier, • Teorii kolejek (masowej obsługi), • Teorii grafów, • Symulacji. 3 PROGRAMOWANIE LINIOWE 4 Wstęp do Programowania Liniowego (PL) • Model PL ma na celu poszukiwanie maksimum bądź minimum funkcji liniowej przy liniowych ograniczeniach • Elementy modelu PL: – Zbiór zmiennych decyzyjnych – Funkcja kryterium. – Układ ograniczeń. 5 Model Programowania Liniowego w postaci klasycznej max z (x) c x T Ax b x0 x = [xj] j=1,...,n – wektor wartości zmiennych decyzyjnych, c = [cj] j=1,...,n – wektor parametrów funkcji kryterium, A = [aij] i=1,...,m, j=1,...,n – macierz parametrów lewych stron ograniczeń, b = [bi] i=1,...,m – wektor prawych stron ograniczeń 6 Model Programowania Liniowego w postaci klasycznej n max z (x) c j x j j 1 a11 x1 a12 x 2 ... a1n x n b1 a 21 x1 a 22 x 2 ... a 2 n x n b2 ............................................ a m1 x1 a m 2 x 2 ... a mn x n bm x1 0, x2 0, ... xn 0 7 Wstęp do PL Zastosowania modeli LP w różnych dziedzinach: • Produkcja • Finanse • Rolnictwo • Marketing i reklama, itd.. 8 Wstęp do PL • Istotna rola Programowania Liniowego – Efektywne algorytmy obliczeniowe gwarantujące znalezienie rozwiązania optymalnego – Możliwa analiza wrażliwości rozwiązania optymalnego – co by było, gdyby...?. 9 Wstęp do PL • Założenia modelu PL: – Znane wartości parametrów, – Funkcja kryterium i ograniczenia mają własność stałych przyrostów (constant returns to scale) – ten sam co do wielkości przyrost zmiennej , bez względu na początkowy poziom, powoduje zawsze taki sam przyrost wartości funkcji – Addytywność efektów związanych ze zmiennymi, – Zmienne decyzyjne mają charakter ciągły – mogą przyjąć każdą wartość z określonego przedziału liczbowego (inne modelowanie dla zmiennych całkowitoliczbowych czy też binarnych), – Zakłada się nieujemność zmiennych decyzyjnych. 10 Firma „Puchatek” – problem optymalnego planu produkcji • Firma produkuje dwa rodzaje zabawek plastikowych samochodzików - dla dzieci powyżej 1 roku: – ciężarówka. – traktor. • Występują ograniczone zasoby dwóch środków produkcji: – 1000 kg specjalnego plastiku. – Czas produkcji w ciągu tygodnia ograniczony do 40 godzin. 11 Firma „Puchatek” – problem optymalnego planu produkcji • Wymagania rynkowe – Wielkość produkcji nie może przekroczyć 7000 szt. – Liczba ciężarówek nie może przekroczyć liczby traktorów o więcej niż 3500 szt. • Informacja technologiczna – Ciężarówka wymaga 20 dkg plastiku i 0,3 minut czasu produkcji, – Traktor wymaga 10 dkg plastiku i 0,4 minut czasu pracy. 12 Firma „Puchatek” – problem optymalnego planu produkcji • Obecna strategia planowania produkcji: – Produkować jak najwięcej produktu bardziej zyskownego (Ciężarówka – zysk jedn. 8 zł za dziesięć sztuk), – Pozostałe środki przeznaczyć na produkt mniej zyskowny (Traktor – zysk jedn. 5 zł za dziesięć sztuk), pamiętając o zaleceniach działu marketingu. • Obecny tygodniowy plan produkcji: Ciężarówka Traktor Szacowany zysk 8(450) + 5(100) = 4500 sztuk = 1000 sztuk = 4100 zł tygodniowo 13 Firma szuka rozwiązania, które może przynieść zwiększenie zysku 14 Model PL dla firmy „Puchatek” • Zmienne decyzyjne: – X1 = tygodniowa wielkość produkcji ciężarówek (w 10 szt.) – X2 = tygodniowa wielkość produkcji traktorów (w 10 szt.) • Funkcja kryterium: – maksymalizacja zysku tygodniowego 15 Model PL dla firmy „Puchatek” Max z(x) = 8X1 + 5X2 (zysk tygodniowy w zł) przy ograniczeniach: 2X1 + 1X2 < 1000 (plastik w kg) 3X1 + 4X2 < 2400 (czas produkcji w minutach) X1 + X2 < 700 (wielkość produkcji w 10 szt.) X1 - X2 < 350 (Mix) Xj 0, j = 1,2 (nieujemność zmiennych decyzyjnych) 16 Analiza graficzna zadania PL Zbiór punktów, które spełniają wszystkie ograniczenia to ZBIÓR ROZWIĄZAŃ DOPUSZCZALNYCH 17 Analiza graficzna – zbiór rozwiązań dopuszczalnych X2 Ograniczenia na nieujemność zmiennych X1 18 Analiza graficzna – zbiór rozwiązań dopuszczalnych X2 Plastik 2X1+X2 < 1000 1000 Produkcja całkowita: X1+X2 <700 (nieistotne) 700 500 Niedopuszczalne Czas produkcji 3X1+4X2 <2400 Dopuszczalne 500 700 X1 19 Analiza graficzna – zbiór rozwiązań dopuszczalnych X2 1000 Plastik 2X1+X2 < 1000 Produkcja całkowita: X1+X2 <700 (nieistotne) 700 500 Czas produkcji 3X1+4X2< 2400 Niedopuszczalne Mix X1-X2 < 350 Dopuszczalne 500 X1 700 Punkty wewnętrzne. Punkty brzegowe Punkty wierzchołkowe • Trzy rodzaje rozwiązań dopuszczalnych 20 Poszukiwanie rozwiązania optymalnego 21 Poszukiwanie rozwiązania optymalnego X2 1000 700 Ustalamy dowolną wielkość zysku, np. = 2000 zł, i rysujemy odpowiadającą izokwantę funkcji kryterium. (Izokwanta liniowej funkcji kryterium to prosta mająca tę własność, że dla wszystkich punktów tej prostej wartość funkcji jest jednakowa) Zysk =4360 zł 500 Zwiększamy zysk tak dalece jak to możliwe... ...i kontynuujemy, dopóki jest to dopuszczalne X1 22 500 Podsumowanie rozwiązania optymalnego Ciężarówki = 3200 szt. Traktory = 3600 szt. Zysk maksymalny = 4360 zł – Rozwiązanie optymalne wykorzystuje cały zasób surowca – plastik oraz czasu produkcji – ograniczenia wiążące. – Produkcja całkowita to 6800 szt. (a nie max 7000szt.) – Ograniczenie na Mix produktów spełnione jako nierówność: 320 - 360 = -40 < 350 23 Punkty wierzchołkowe a rozwiązanie optymalne – Jeżeli problem PL posiada rozwiązanie optymalne, to jest nim punkt wierzchołkowy, przynajmniej jeden. 24 Punkty wierzchołkowe a rozwiązanie optymalne Jeżeli dokonany zostanie wybór rozwiązania optymalnego, to proste przecinające się w punkcie wierzchołkowym, będącym rozwiązaniem optymalnym, odpowiadają ograniczeniom wiążącym, tj. spełnionym jako równania. W problemie firmy „Puchatek” ograniczeniami wiążącymi są: zapas plastiku oraz czas produkcji. Oznacza to, że cały zapas surowca jest wykorzystany. Również czas produkcji wykorzystany jest w 100% Pozostałe ograniczenia są niewiążące – obserwujemy zapas w ograniczeniu na wielkość produkcji oraz mix produktów. Zapas – różnica między wartością prawej i lewej strony ograniczenia 25 Niejednoznaczne rozwiązanie optymalne • W przypadku niejednoznaczności rozwiązania optymalnego, izokwanta funkcji kryterium jest równoległa do jednego z ograniczeń. •W przypadku niejednoznacznosci każda liniowa kombinacja (średnia ważona) optymalnych rozwiązań wierzchołkowych jest również optymalna 26 Analiza wrażliwości rozwiązania optymalnego • Jak wrażliwe jest rozwiązanie optymalne na zmiany parametrów modelu? • Powody przeprowadzania analizy wrażliwości: – Założenie o znanych wartościach parametrów nie jest prawdziwe – znamy tylko wartości ocen statystycznych lub eksperckich parametrów – możliwy błąd szacunku, – Wartości parametrów mogą zmieniać się w czasie, – Analiza wrażliwości dostarcza cennej informacji dla celów zarządzania. 27 Wrażliwość rozwiązania na zmiany parametrów funkcji kryterium. • Przedział optymalności – Rozwiązanie optymalne pozostaje niezmienne tak długo jak • Parametr funkcji kryterium należy do przedziału optymalności • Nie obserwujemy zmian innych parametrów modelu. – Wartość funkcji kryterium ulegnie zmianie, jeżeli analizowany parametr dotyczy zmiennej, której wartość jest większa od zera. 28 Wrażliwość rozwiązania na zmiany parametrów funkcji kryterium. 1000 X2 500 X1 29 500 800 Wrażliwość rozwiązania na zmiany parametrów funkcji kryterium. 1000 X2 Przedział optymalności: [3.75, 10] 500 400 600 800 X1 30 Wrażliwość rozwiązania na zmiany parametrów funkcji kryterium. Interpretacja przedziału optymalności dla parametru c1: Zakładając, że inne elementy modelu (parametry, ograniczenia) nie ulegną zmianie, to zmiana zysku jednostkowego (w 10 szt.) dla ciężarówek w przedziale [3,75 ;10] zł nie spowoduje utraty optymalności przez uzyskane rozwiązanie. Maksymalny zysk odpowiada produkcji 3200 ciężarówek i 3600 szt. traktorów. Oczywiście, zmiana zysku jednostkowego dla ciężarówek spowoduje zmianę wartości maksymalnego zysku, np. dla c1=9zł/10szt. maksymalny zysk wyniesie 320*9+360*5= 4680 zł. 31 Analiza wrażliwości rozwiązania na zmianę prawych stron ograniczeń • Jak zmieni się optymalna wartość funkcji kryterium (np. maksymalny zysk), jeżeli prawa strona wybranego ograniczenia wzrośnie o jednostkę? • Dla jak dużych przyrostów bądź spadków wartości prawej strony ograniczenia, wyznaczona wartość przyrostu funkcji kryterium pozostanie niezmieniona? 32 Analiza wrażliwości rozwiązania na zmianę prawych stron ograniczeń • Każda zmiana wartości prawej strony ograniczenia wiążącego spowoduje zmianę rozwiązania optymalnego. • Dowolna zmiana prawej strony ograniczenia niewiążącego, mniejsza od wielkości zapasu, nie spowoduje zmiany rozwiązania optymalnego, 33 Dualizm w programowaniu liniowym Symetryczna para zadań dualnych: max z (x) c x T Ax b ATy c y0 x0 zadanie prymalne min w( y ) b y T x - n 1 wektor zmiennych decyzyjnych, zadanie dualne y - m 1 wektor zmiennych dualnych. max z( x) min w( y ) . 34 Własności zadania dualnego: • Jeżeli jedno z pary zadań nie posiada skończonego rozwiązania optymalnego, to drugie z zadań jest sprzeczne, • Jeżeli jedno z pary zadań jest sprzeczne, to drugie może być sprzeczne bądź nie posiadać skończonego rozwiązania optymalnego, • Każda ze zmiennych dualnych odpowiada konkretnemu ograniczeniu zadania prymalnego, 35 Interpretacja wycen dualnych • interpretacja wynika z własności równości optymalnych wartości funkcji kryterium obu zadań: z max yi bi , przyrost optymalnej wartości funkcji kryterium zadania prymalnego spowodowany marginalnym przyrostem prawej strony odpowiadającego ograniczenia (pamiętamy, że zmiana wartości prawej strony ograniczenia powoduje, w ogólnym przypadku, zmianę wartości zmiennych zadania PL). 36 Wyceny dualne (Shadow Prices) Zakładając, że nie występują zmiany żadnych innych parametrów wejściowych modelu, zmiana optymalnej (max albo min) wartości funkcji kryterium na jednostkę przyrostu wartości prawej strony ograniczenia nazywana jest wyceną (ceną) dualną (najczęściej, wyceną dualną zasobu) 37 Plastik Wyceny dualne – ilustracja graficzna X2 1000 Jeżeli dostępna jest większa ilość plastiku (ograniczenie na zasób plastiku będzie rozluźnione), wzrasta wartość prawej strony ograniczenia Max zysk = 4360 zł 500 Max zysk = 4363.4 zł Wycena dualna = 4363.40 – 4360.00 = 3.40 Czas produkcji X1 500 38 Wyceny dualne – interpretacja c.d. • Zmienna dualna posiada miano, wynikające ze sposobu pomiaru wartości funkcji kryterium i wartości ograniczenia, np. y1=3,4 $/kg (dla 1. ograniczenia na zasób plastiku) • Jeżeli zapas plastiku zwiększy się o 1 kg to maksymalny zysk (odpowiadający nowemu rozwiązaniu optymalnemu) zwiększy się o 3,4 $ i wyniesie 4360 + 3,4 =4363,4 $. 39 Własności zadania dualnego c.d.: • W przypadku modeli PL o mieszanych warunkach ograniczających, zmienne dualne odpowiadające ograniczeniom o przeciwnych znakach niż dla symetrycznej pary (max „” oraz min „”) są niedodatnie; w przypadku ograniczeń równościowych nie można przewidzieć znaku zmiennej dualnej. 40 Przedział dopuszczalności • Zakładając brak zmian wartości innych parametrów wejściowych modelu, przedziałem dopuszczalności nazywamy: Przedział wartości prawej strony ograniczenia, w zakresie którego nie ulegają zmianie wyceny dualne. • W obrębie przedziału dopuszczalności, zmianę optymalnej wartości funkcji kryterium możemy wyznaczyć następująco: Zmiana wartości f. kryterium = [wycena dualna]x[zmiana wartości prawej strony ograniczenia] 41 Przedział dopuszczalności Plastik X2 Zwiększanie zasobu plastiku przynosi efekt tylko do czasu, aż pojawi się nowe ograniczenie wiążące. 1000 Produkcja całkowita X1 + X2≤700 Nowe ograniczenie wiążące 500 To jest rozwiązanie niedopuszczalne Czas produkcji X1 500 42 Przedział dopuszczalności Plastik X2 1000 Zauważmy, jak zmienia się zysk, gdy rośnie zasób plastiku. 500 Czas produkcji X1 500 43 Przedział dopuszczalności X2 1000 Rozwiązanie niedopuszczalne Zasób plastiku zmniejsza się (ograniczenie jest bardziej restrykcyjne). Zysk zmniejsza się 500 Nowe ograniczenie wiążące X1 500 44 „Puchatek” – wprowadzanie danych w programie WinQSB Wprowadzanie danych w programie WinQSB 45 „Puchatek” – rozwiązanie graficzne w programie WinQSB Zapas plastiku Ilość wyrobów mix Czas pracy 46 „Puchatek” – rozwiązanie w programie WinQSB Przedziały optymalności Wyceny dualne Przedziały dopuszczalności Zapas/nadmiar 47 Możliwe, inne niż jednoznaczne, wyniki optymalizacji • Sprzeczność zadania: Zbiór rozwiązań dopuszczalnych jest pusty. Powodem są zbyt restrykcyjne ograniczenia. • Nieograniczoność: Funkcja kryterium może być dowolnie duża. Powodem jest brak istotnego ograniczenia w modelu. • Rozwiązanie niejednoznaczne: Więcej niż jeden punkt odpowiada optymalnej wartości funkcji kryterium 48 Zadanie PL jest sprzeczne . 2 3 1 49 Rozwiązanie nieograniczone 50