Załącznik nr 5 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej i telekomunikacji optycznej Nr UMO-2011/01/B/ST7/06234 Metoda pomiaru elektroabsorpcji światła prowadzonego w wytworzonych strukturach falowodowych Wykonawcy: Andrzej Ziółkowski Szczecin 2015 1 1. Układ pomiarowy służący do oceny absorpcji i elektroabsorpcji Pomiary sygnału świetlnego wprowadzonego do struktur wytworzonych falowodów przeprowadzone zostały w układzie, którego szczegóły przedstawiono w Załączniku nr 4 do sprawozdania merytorycznego. Przedstawiony został on również niżej (Rys. 1) przez wzgląd na klarowność niniejszego dokumentu. Rys. 1. Schemat układu pomiarowego. Użyto następujących oznaczeń: PF – półfalówka, P – polaryzator, KP – kostka światłodzieląca, polaryzująca, PD – płytka światłodzieląca, S – soczewka sferyczna, Sc - soczewka cylindryczna, OM – obiektyw mikroskopowy, T - Tłumik (pochłaniacz optyczny), BE – beam expander (poszerzacz wiązki), D – diafragma, CCD – kamera CCD (BeamProfiler). 2. Element pomiarowy W kontekście pomiarowym, kluczowym elementem przedstawionego wyżej układu badawczego jest element detekcyjny. Jak wynika z przedstawionego schematu zdecydowano się wykorzystać kamerę CCD z odpowiednim oprogramowaniem (BreamProfiler). Może ona zarówno ułatwić procedurę wprowadzania światła do struktury jak również może służyć do jakościowej oceny wprowadzonego do falowodu sygnału świetlnego. W trakcie prac przetestowano kilka urządzeń tego typu. Niżej przedstawiono podstawowe informacje na ich temat oraz ich zalety i wady w kontekście przeprowadzonych pomiarów. Pierwszym testowanym urządzeniem przy pomocy, którego zarejestrowano światło prowadzone w falowodzie był Micro-BeamProfiler wyprodukowany przez firmę Duma Optoelectronics, wyposażony w obiektywy mikroskopowe firmy Melles Griot. Urządzenie to wyposażone jest w matryce CCD zawierającą około 800 000 pikseli, czułą w typowym dla matryc tego typu, zakresie spektralnym 350 – 1000 nm. Urządzenie współpracuje z obiektywami mikroskopowymi, dzięki czemu możliwe jest efektywne powiększenie skanowanego obrazu. Powiększenie w tym przypadku realizowane jest za pomocą zarówno technik optycznych jak i elektronicznych. Dzięki 2 wykorzystaniu tego urządzenia zeskanowano powierzchnię wyjściową falowodu prowadzącego światło a typowe obrazy jakie można w tym przypadku otrzymać zamieszczone zostały w Załączniku nr 4 do sprawozdania merytorycznego. Mimo swoich zalet związanych głównie z wbudowanym układem optyki rozwiązanie to posiada również wadę istotną w kontekście prowadzonych eksperymentów - nie umożliwia pomiaru mocy skanowanego sygnału. Wykorzystanie Micro BeamProfilera było jednak istotne (szczególnie na początkowym etapie eksperymentu) aby przy jego pomocy ocenić poprawność przeprowadzanej procedury wprowadzania światła oraz dokonać pomiaru wiązki formowanej w układzie i na wyjściu falowodu. Rysunek 2 przedstawia opisane urządzenie. Rys. 2. Micro BeamProfilera firmy Duma Optoelectronics wraz z mikroskopowym obiektywem skanującym firmy Melles Griot. Urządzenie pozwala skanować wiązkę laserową o rozmiarach od 0.5 mikrona. Drugim testowanym urządzeniem był BeamProfiler firmy Newport (LBP - 4). Jest to urządzenie, którego konstrukcja również zawiera element CCD. Nie jest to jednak element wyposażony w sprzężony z nim układ optyczny przez co umożliwia pomiar wiązek laserowych o średnicach kilkudziesięciu mikronów. Aby można było zaadoptować tego typu rozwiązanie do skanowania powierzchni wyjściowej falowodu należało rozbudować stanowisko, łącząc wspomnianą kamerę z układem optycznym. Zbudowano układ mechaniczny, umożliwiający dokładne pozycjonowanie zarówno obiektywu skanującego próbkę jak i pozycjonowanie kamery względem obiektywu. Tak rozbudowany układ detekcyjny posiada podobne cechy do wcześniej wykorzystanego micro-beamprofilera. Wykorzystane urządzenie wyposażone jest w możliwość pomiaru mocy optycznej promieniowania padającego na matrycę. W trakcie prac okazało się jednak, że w posiadanym egzemplarzu nie jest ona aktywna. Mimo kontaktu z producentem i sprzedawcą problem ten nie został rozwiązany. Rysunek 3 przedstawia Beam Profiler LBP-4. 3 Rys. 3. BeamProfiler firmy Newport (LBP - 4) wykorzystany we wstępnych pracach nad stanowiskiem laboratoryjnym. Urządzenie nie posiada układu współpracującej z nim optyki bez której jest przeznaczone do pomiarów wiązek o wymiarach około kilkudziesięciu mikronów. Przy pomocy tego typu urządzenia możliwe jest zeskanowanie rozkładów natężenia światła wychodzącego z falowodu nie jest możliwy jednak pomiar jego mocy. Na Rys. 4 przedstawiono przykładowy pomiar wykonany za pomocą Beam Profilera LBP-4. Obrazuje on wpływ zewnętrznego napięcia przyłożonego do struktury falowodu na rozkład poprzeczny modu falowodowego. Badania wykonano dla kilku długości fal promieniowania świetlnego załączając napięcie o wartości 1400 V. Rys. 4. Przykładowy pomiar wykonany przy pomocy urządzenia LBP-4, przedstawia on wpływ zewnętrznego pola elektrycznego na rozkład modu prowadzonego w falowodzie. Widać zależność rozkładu modu zarówno od długości fali jak i napięcia. 4 Trzecim testowanym urządzeniem był Beam Profiler firmy Thorlabs (model BP104IR). W odróżnieniu od wcześniejszych urządzeń, nie jest to kamera CCD. Model BP104-IR jest Beam Profilerem wyposażonym w szczelinę skanującą i fotodiodę InGaAs czułą w zakresie od 700 do 1800 nm. Urządzenie posiada możliwość pomiaru mocy promieniowania padającego na jego element fotoczuły. W trakcie testów szybko zorientowano się, że mimo swoich zalet nie może ono zostać wykorzystane w układzie badawczym ze względu na zbyt niską czułość układu szczelina- detektor. Rys. 5. Beam Profiler firmy Thorlabs (model BP104-IR) wyposażony w szczelinę skanującą oraz fotodiodę InGaAs. Mimo, możliwości pomiaru mocy optycznej posiada zbyt niską czułość w kontekście przewidzianych pomiarów. Ostatnim urządzeniem, które zostało ostatecznie wykorzystane w badaniach był również Beam Profiler firmy Thorlabs ale którego konstrukcja zawiera matrycę CCD. Wykorzystany model BC 106N, posiada możliwość pomiaru mocy optycznych o niskiej wartości. Urządzenie zostało wbudowane głowicę mechaniczną, umożliwiającą jego pozycjonowanie. Rys. 6 przedstawia urządzenie oraz zbudowany układ mechaniczny. Rys. 6. Beam Profiler firmy Thorlabs BC 106N oraz układ skanujący płaszczyznę wyjściową falowodu. 5 3. Wstępne pomiary Podczas pomiarów istotne jest ustalenie odpowiedniej wartości ekspozycji, w taki sposób aby przetwornik AD nie został przesycony (100%) ani aby nie pracował w dolnej granicy swojej rozdzielczości. Do nieodpowiedniej pracy przetwornika AD może dość w sytuacji kiedy czas ekspozycji lub wzmocnienie kamery są dobierane manualnie. Z kolei automatyczne ustawienia ekspozycji pociągają za sobą problemy z odpowiednim ustawieniem optyki obrazującej. W związku z powyższym zastosowałem następujące podejście. W pierwszej kolejności przy braku zewnętrznego pola na próbce, w trybie manualnych ustawień ekspozycji ustawiłem układ obrazujący tak aby otrzymać ostry obraz o maksymalnej mocy. Następnie zmieniłem ustawienia ekspozycji na automatyczne aby przeprowadzić pomiary elektroabsorbcyjne. Dzięki odpowiedniej funkcji pomiarowej możliwe jest zbieranie danych pomiarowych jedynie z wydzielonego fragmentu matrycy CCD. Zawężony obraz matrycy zawierający światło zeskanowane z płaszczyzny wyjściowej falowodu przedstawia Rys. 7. Obraz jest obrócony o 90 stopni ponieważ kamera została pod takim kątem wmontowana w głowicę pozycjonującą, co widoczne jest na Rys. 6. Rys. 7. Obraz światła propagującego się w falowodzie, zeskanowany za pomocą urządzenia BC 106N pracującego w układzie przedstawionym na rysunku 6. Obraz jest obrócony o 90 stopni. 6 4. Pomiary wykonane dla próbki F5D-1T-S4 (2) Pierwszą czynnością wykonaną przystępując do pomiarów był test stabilności mocy prowadzonej w falowodzie bez zewnętrznego pola elektrycznego. Rys. 8 przedstawia moc wyjściową falowodu w funkcji czasu. W trzech widocznych na wykresie punktach pomiarowych wiązka została przysłoniona za pomocą detektora w celu weryfikacji mocy lasera. Nie stwierdzono zmian mocy generowanej przez laser, widoczne są jednak zmiany mocy światła prowadzonego w falowodzie. Punkty Pomiaru Mocy Lasera 3.18 W 3.18 W Rys. 8. Moc światła prowadzonego w falowodzie bez zewnętrznego pola elektrycznego. W trzech widocznych punktach dokonano pomiaru mocy wiązki lasera aby ocenić jej stabilność. W trakcie badań stwierdzono, że wytworzone struktury podczas pracy grzeją się. Generowane ciepło jest źródłem zarówno rozszerzania się podstawek na których są zamontowane jak również samej struktury, ewentualnie warstwy kleju za pomocą którego zostały do podstawek przytwierdzone. Jest to bardzo istotny czynnik wpływający na procedurę pomiarową i ocenę merytoryczną przeprowadzonych eksperymentów. Na kolejnych wykresach przedstawione zostaną systematyczne pomiary wykonane w zbudowanym układzie laboratoryjnym. Kolejno zaprezentowane zostaną wyniki uzyskane dla kilku wartości zewnętrznego napięcia od 1400 V do 800V. 7 Ze względu na fakt, że stwierdzono przemieszczanie się struktury falowodu pod wpływem zewnętrznego pola elektrycznego, zastosowano następującą procedurę: W pierwszej kolejności falowód był ustawiony w pozycji zapewniającej maksymalne sprzężenie ze źródłem światła, bez zewnętrznego pola elektrycznego. Następnie załączono zewnętrzne napięcie i po czasie po którym pozycja falowodu stabilizowała się przeprowadzano korektę jego położenia do pozycji zapewniającej maksimum prowadzonej mocy. Jeżeli moc światła po korekcie była stabilna napięcie było wyłączane. Dalsza obserwacja zmian mocy prowadzonej w falowodzie związana jest z procesem relaksacji. Przemieszczeniem jego pozycji podczas powrotu do temperatury pokojowej. Pomiary przeprowadzono dla fali o długości 860 nm. Włączenie napięcia 1400 V Wyłączenie napięcia Korekta położenia falowodu - maximum mocy Korekta położenia falowodu - maximum mocy Rys. 9. Moc światła prowadzonego w falowodzie i jego zmiana pod wpływem napięcia o wartości 1400 V (proces grzania), korekty jego położenia oraz procesu stygnięcia i ponownej korekty położenia. 8 Wyłączenie napięcia Włączenie napięcia 1300 V Korekta położenia falowodu - maximum mocy Rys. 10. Moc światła prowadzonego w falowodzie i jego zmiana pod wpływem napięcia o wartości 1300 V (proces grzania), korekty jego położenia oraz procesu stygnięcia. Włączenie napięcia 1200 V Wyłączenie napięcia Korekta położenia falowodu - maximum mocy Rys. 11. Moc światła prowadzonego w falowodzie i jego zmiana pod wpływem napięcia o wartości 1200 V (proces grzania), korekty jego położenia oraz procesu stygnięcia. 9 Wyłączenie napięcia Korekta położenia falowodu - maximum mocy Włączenie napięcia 1100 V Rys. 12. Moc światła prowadzonego w falowodzie i jego zmiana pod wpływem napięcia o wartości 1100 V (proces grzania), korekty jego położenia oraz procesu. Włączenie napięcia 1000 V Wyłączenie napięcia Korekta położenia falowodu - maximum mocy Rys. 13. Moc światła prowadzonego w falowodzie i jego zmiana pod wpływem napięcia o wartości 1000 V (proces grzania), korekty jego położenia oraz procesu stygnięcia. 10 Włączenie napięcia 900 V Wyłączenie napięcia Korekta położenia falowodu - maximum mocy Rys. 14. Moc światła prowadzonego w falowodzie i jego zmiana pod wpływem napięcia o wartości 900 V (proces grzania), korekty jego położenia oraz procesu stygnięcia. Włączenie napięcia 800 V Wyłączenie napięcia Korekta położenia falowodu - maximum mocy Rys. 15. Moc światła prowadzonego w falowodzie i jego zmiana pod wpływem napięcia o wartości 800 V (proces grzania), korekty jego położenia oraz procesu stygnięcia. 11 Pomiar przy napięciu 1400 V zostało powtórzony. Włączenie napięcia 1400 V Wyłączenie napięcia Korekta położenia falowodu - maximum mocy Rys. 16. Powtórzony pomiar mocy światła prowadzonego w falowodzie i jego zmiana pod wpływem napięcia o wartości 1400 V (proces grzania), korekty jego położenia oraz procesu stygnięcia. Ostatecznie na podstawie otrzymanych wyników wyznaczono różnicę mocy zmierzonej bez zewnętrznego pola elektrycznego oraz mocy zmierzonej po przyłożeniu zewnętrznego pola elektrycznego i kompensacji położenia falowodu. W następnej kolejności na stosując prawo absorpcji Lamberta wyznaczono współczynnik elektroabsorpcji czyli wywołaną zewnętrznym polem elektrycznym zmianę współczynnika absorpcji. Wyniki zostały przedstawione na rysunkach 17 oraz 18. 12 Rys. 17. Różnica mocy zmierzonej bez zewnętrznego pola elektrycznego oraz mocy zmierzonej po przyłożeniu zewnętrznego pola w funkcji przykładanego do próbki napięcia. Rys. 18. Współczynnik elektroabsorpcji w funkcji przykładanego do próbki napięcia. 5. Podsumowanie Przedstawiono metodę pomiarową za pomocą, której możliwe jest wyznaczenie współczynnika wywołanej zewnętrznym polem elektrycznym zmiany absorpcji badanych próbek. W trakcie prac zbudowano układ eksperymentalny oraz przetestowano jego możliwości dla kilku urządzeń detekcyjnych. Uzyskano prowadzenie światła i możliwość jego pomiaru. Podczas wstępnych pomiarów stwierdzono istotny z merytorycznego punktu widzenia efekt rozgrzewania się badanych struktur w zewnętrznym polu elektrycznym. W związku z tym przeprowadzono pomiary uwzględniając wywołane efektami termicznymi przemieszczenie próbki falowodowej. 13