Ćwiczenie M6 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚĆI CIECZY METODĄ STOKESA Przyrządy: Cylinder napełniony olejem parafinowym, kulki teflonowe, przymiar, śruba mikrometryczna, stoper, waga analityczna. Na kulkę o masie m i promieniu r poruszającą się w cieczy lepkiej o gęstości ρ p działają trzy siły: 1. siła ciężkości F1 = mg, 4 2. siła wyporu F2 = πr 3 ρ p g , 3 3. siła tarcia wewnętrznego cieczy F3 = 6πrηv , gdzie: η - jest współczynnikiem lepkości cieczy a v – jest prędkością kulki. Z chwilą zrównoważenia tych trzech sił kulka będzie poruszać się ruchem jednostajnym z prędkością początkową v = s/t , przy czym s jest odległością dwóch zaznaczonych na rurze poziomów, zaś t jest czasem opadania kulki na drodze s. Współczynnik lepkości cieczy wyrazi się wtedy wzorem: η= 2r 2 g ( ρ k − ρ p )t r 9 s (1 + 2,4 ) R (1) r , gdzie R R jest promieniem cylindra, stanowi poprawkę do siły tarcia wewnętrznego spowodowaną szerokością rury. gdzie ρ k jest gęstością materiału z którego wykonana jest kulka zaś wyrażenie 2,4 Kolejność wykonywanych czynności: 1. Dwie kulki zważyć pojedynczo na wadze analitycznej, zmierzyć trzykrotnie śrubą mikrometryczną średnicę każdej kulki 2r. Wyniki zapisać w tabeli : L.p. m 2r rśr Vk ρk ρ kś 3 [ kg ] [m] [m] [ m3 ] [ kg/m ] [ kg/m3 ] 2. Każdą z kulek wpuszczać pojedynczo do cylindra napełnionego olejem parafinowym (do wrzucania kulek wykorzystać lejek) . 3. Zmierzyć czas opadania kulki między dwoma kreskami na cylindrze. Powtórzyć pomiar 5 razy. 4. Przymiarem zmierzyć odległość s między kreskami oraz średnicę cylindra 2R (średnica wewnętrza – bez ścianek cylindra). Wyniki zapisać w tabeli poniżej L.p. t s tśr R [s] [m] [s] [m] 5. Obliczyć gęstość materiału, z którego są wykonane kulki. 6. Obliczyć współczynnik lepkości oleju przyjmując gęstość oleju parafinowego kg ρ p = 854 3 . m 7. Obliczyć niepewność maksymalną ∆η . Wymagania: - przepływ cieczy laminarny i turbulentny, siła tarcia wewnętrznego, współczynnik lepkości i jego jednostki, rozkład prędkości przepływu płynu w rurce [ 5, 9 ] - równanie Stokesa, wyprowadzenie wzoru ( 1 ) [ 1, 9 ]