1 - EnergieOdnawialne.pl

advertisement
Możliwy udział odnawialnych źródeł energii w rozwiązywaniu
podstawowych problemów rozwoju wsi i kraju
Wiesław Ciechanowicz, Stefan Szczukowski
Konsorcjum „Bioenergia na Rzecz Rozwoju Wsi”
W pracach [1,2] wykazano, że technologia produkcji metanolu z biomasy, węgla przy udziale mionowo katalitycznej
syntezy jądrowej mogłaby tworzyć cykl metanolu w skali globalnej, który by spełniał równocześnie, sprzeczne z punktu
widzenia możliwości korzystania z węgla kopalnego, dwa dążenia ludzkości: zachowanie klimatu ziemskiego dla przyszłych
pokoleń oraz zrównoważoną przyszłość cywilizacji.
Mogłoby to także dać Polsce realną szansę rozwiązać problemy wsi, łagodzenia zadłużenia kraju oraz stać się energetycznie samowystarczalną w horyzoncie 2030 roku. Szczególnie dlatego, że koszty produkcji metanolu według patentu
Konsorcjum [3, str. 146], mogą być porównywalne z kosztami produkcji metanolu wyłącznie z węgla kopalnego [4].
Powstaje kwestia, którą wyjaśnia się w niniejszym opracowaniu, czy wyżej wymienione problemy rozwoju wsi i kraju
można by rozwiązywać stosując wyłącznie odnawialne źródła energii.
1 Problemy rozwoju wsi i kraju [2]
Przypomnijmy:
- Polska zajmuje 4 miejsce w skali świata po Chinach, Indiach i Turcji pod względem liczby ludności bezpośrednio
zatrudnionych w rolnictwie.
- Produkt Krajowy Brutto przypadający na ludność rolniczą w liczbie 14.4097 miliona osób odniesiony do około
16.9 mln hektarów użytków rolnych w latach 2002-03 był dla roku 2003-04 około 12-to krotnie mniejszy w
porównaniu do PKB przypadającego średnio na mieszkańca Polski oraz ponad 60 –krotnie mniejszy w
porównaniu do PKB przypadającego na mieszkańca UE-15.
- W budżecie na 2006 rok przewidywano zadłużenie w kwocie 160 mld USD. Oznacza to, że gospodarka Polski
zadłużała się w latach 1994-2006 dodatkowo każdego roku o około 9 mld USD. W budżecie na 2007 rok
przewiduje się, że kwota zadłużenia wzrośnie z 9 mld USD do 10 mld USD. Konsekwencją dalszego zadłużania
się gospodarki polskiej byłby kryzys ekonomiczny kraju.
Jedyną szansą zmniejszania rozmiaru ciągłego zadłużenia karu jest uczestnictwo Polski na pojawiającym się
globalnym rynku metanolu, jako alternatywy dla ropy. Uczestnictwo z produktem globalnym wysoko
przetworzonym, w którym uczestniczyłaby biomasa lignocelulozowa jako produkt polskiej wsi.
Takie rozwiązanie zawiera polski patent, integrujący produkcję metanolu z biomasy i węgla przy udziale
syntezy jądrowej ze źródłami odnawialnymi oraz z bardziej sprawnym wykorzystywaniem węgla w elektrowniach.
Wartość sprzedaży produkowanego metanolu mogłaby stanowić około 62000 USD/ha [9]. Stwarzałoby to
potencjalne możliwości znacznego wzrostu wartości dodanej brutto produkcji metanolu przy wykorzystywaniu
biomasy, jako jednej ze składowych tworzących Produkt Krajowy Brutto, przypadającej na jeden hektar ziemi
uprawnej, osiągalnej w wymiarze 13000 USD/ha.
Przyjmując liczbę zatrudnionych w uprawie i produkcji metanolu, na obszarze 1 miliona ha uprawy biomasy,
ocenianą na 300000 osób, wartość PKB przypadająca na jednego zatrudnionego mogłaby stanowić 43000 USD.
Powstaje kwestia jakie inne odnawialne względnie nieodnawialne źródła energii mogłyby poprzez
uczestnictwo w globalnym systemie energii tworzyć szansę dla rozwiązywania problemów polskiej wsi oraz
kraju?
2 Odnawialne źródła energii [3 str. 71, 5,6]
Do odnawialnych źródeł energii zalicza się: energię słoneczną wykorzystywaną bezpośrednio, energię
kinetyczną wiatrów, energię wnętrza oceanów, fal morskich, pływów morskich, energię wnętrza skorupy ziemskiej,
energię rzek i energię biomasy. Odnawialne źródła energii można podzielić na globalnie dostępne i lokalnie
dostępne w poszczególnych krajach lub regionach.
Pierwszą grupę, a więc ogólnie dostępne stanowią jedynie: energia słoneczna manifestującą się w postaci
promieniowania świetlnego oraz energia wnętrza skorupy ziemskiej.
2
Do drugiej grupy można zaliczyć: energię słoneczną wykorzystywaną w postaci promieniowania świetlnego
lub cieplnego, energię kinetyczną wiatrów, energię wnętrza oceanów, fal morskich, pływów morskich, gorące
źródła energii wnętrza skorupy ziemskiej i energię kinetyczną rzek.
3 Globalnie dostępne odnawialne źródła energii [3 str.80]
Powstaje kwestia, przy wykorzystywaniu jakich odnawialnych źródeł energii oraz jakich technologii,
zapewniających neutralność wobec efektu cieplarnianego, mogłaby być pozyskiwana:
- globalnie dostępna energia elektryczna lub ciepło wykorzystywane w gospodarce komunalno bytowej i
obiektach użyteczności publicznej.
Ażeby pozyskiwać energię pod postacią promieniowania świetlnego należy stosować ogniwa
fotowoltaiczne. Dla pozyskiwania energii słonecznej w postaci promieniowania cieplnego, stosowane są
odpowiednie kolektory słoneczne. Pierwsze wykorzystują zjawisko fotoelektryczne wewnętrzne, drugie
zjawisko promieniowania cieplnego.
Energia promieniowania świetlnego jako globalnie dostępne źródło energii odnawialnej
Jedynym globalnym odnawialnym pierwotnym źródłem energii dla uzyskania energii elektrycznej
jako wtórnego nośnika energii może być energia promieniowania świetlnego wykorzystywana przy
udziale satelitarnych elektrownii słonecznych [5]. Mają one składać się z części orbitalnej i naziemnej.
Podstawowymi elementami części orbitalnej są: panele ogniw fotowoltaicznych, generator mikrofal i
antena nadawcza. Część naziemną ma stanowić antena odbiorcza.
Przekazywanie mocy rzędu 10000 MW wymagałoby umieszczenia na orbicie okołoziemskiej obok
paneli o długości boku 4 km anteny nadawczej o średnicy 1 km. Dla zapewnienia sprawności odbioru
mocy rzędu 55 -75 % średnica naziemna anteny odbiorczej winna wynosić 7 km.
Te uwarunkowania jak również możliwość zaistnienia takich zagrożeń dla środowiska jak:
- naruszenie bilansu energii Ziemi poprzez powiększanie warstw chmur w wyniku wydmuchu wielkiej
ilości pary silników rakietowych,
- efektu biologicznego promieniowania fal elektromagnetycznych oraz
- możliwości interferencji transmitowanych mikrofal z falami radiowymi, mogących powodować
niebezpieczne sytuacje w funkcjonowaniu nawigacji lotniczej,
eliminują, jako globalnie źródło energii przyszłych cywilizacji, energię promieniowania słonecznego,
bez względu na uwarunkowania ekonomiczne, nawet dla krajów rozwijających technologie przestrzeni
kosmicznych.
Energia wnętrza skorupy ziemskiej jako globalnie dostępne odnawialne źródło ciepła
Jedynym globalnym odnawialnym źródłem ciepła jest ciepło wymieniane w skorupie ziemskiej na
zasadzie przewodzenia. Jest teoretycznie dostępne w każdym punkcie powierzchni Ziemi. Określa się je
mianem suchych źródeł geotermicznych. Wykorzystywanie ich wymaga wiercenia studni na głębokość
kilku kilometrów dla uzyskania odpowiedniej różnicy temperatur i formowania na tej głębokości
odpowiednich powierzchni wymiany ciepła. Suche źródła geotermiczne są obarczone dużym elementem
niepewności ze względu na rozeznanie potencjalnych zasobów, koszty i wpływ na środowisko.
Te aspekty, jak również fakt, że to ciepło jest ciepłem niskotemperaturowym, a więc niskiej jakości,
nie może być rozważane jako globalnie dostępne samodzielne źródło ciepła o określonej temperaturze.
Aby podnieść jakość tego źródła należałoby go kojarzyć z pompą cieplną zasilaną globalnie dostępnym
odnawialnym źródłem energii elektrycznej, gazem lub węglowodorami, co nie jest osiągalne z skali kuli
ziemskiej.
Na podstawie przedstawionych informacji przyszła cywilizacja nie będzie dysponować globalnie dostępnymi
odnawialnymi źródłami energii elektrycznej względnie ciepła ekonomicznie akceptowalnych. Brak jest także źródła
paliwa ciekłego mogącego stanowić alternatywę dla ropy.
4 Lokalnie dostępne odnawialne źródła energii
Powstaje więc kwestia wykorzystywania lokalnie dostępnych źródeł energii odnawialnej, dostępnych w
Polsce jak: energia słoneczna promieniowania świetlnego i cieplnego, gorące źródła geotermiczne, energia
kinetyczna wiatrów, energia kinetyczna rzek oraz biomasy.
3
Energia promieniowania świetlnego jako źródło energii elektrycznej
Ogniwa fotowoltaiczne są półprzewodnikami posiadającymi zdolność bezpośredniej przemiany światła
słonecznego w energię prądu elektrycznego.
Warunkami akceptowalności ekonomicznej ogniw fotowoltaicznych to lokalizacja ogniw na obszarach o
dużym nasłonecznieniu oraz masowa produkcja. Jeżeli zamierzony cel obniżania kosztów byłby osiągnięty, energia
słoneczna bezpośrednio przetwarzana w ogniwach fotowoltaicznych na terenach o dużym nasłonecznieniu, jak
strefy podzwrotnikowe, szczególnie w Afryce, mogłaby stać się podstawowym źródłem energii elektrycznej.
Energia promieniowania cieplnego jako źródło ciepła
Dla pozyskiwania energii słonecznej w postaci promieniowania cieplnego, stosowane są odpowiednie
kolektory słoneczne. Rozróżnia się je ze względu na współczynnik koncentracji promieniowania słonecznego i
temperatury czynnika roboczego [5]. Są to kolektory niskotemperaturowe płaskie, średniotemperaturowe
soczewkowe, wysokotemperaturowe w formie luster i heliostatów, które koncentrują promieniowanie słoneczne na
zbiorniku umieszczonym na wieży, bardzo wysokotemperaturowe w postaci parabolicznych talerzy.
Obecnie powstają perspektywy znacznego obniżenia kosztów inwestycyjnych ogniw fotowoltaicznych. Jeżeli
to zostanie osiągnięte staną się dominującymi źródłami energii na obszarach o dużym nasłonecznieniu eliminując
równocześnie opłacalność stosowania kolektorów średniotemperaturowych, wysokotemperaturowych oraz bardzo
wysokotemperaturowych. Pozostają więc kolektory niskotemperaturowe płaskie mające już znaczne zastosowanie
w regionach o średnim współczynniku nasłonecznienia wynoszącym kilka procent, jakie ma miejsce między
innymi w regionach morza śródziemnego lub innych regionach o analogicznym położeniu geograficznym.
Na podstawie powyżej przedstawionych informacji energia promieniowania świetlnego oraz cieplnego jako
lokalne odnawialne źródła energii nie mogą przyczyniać się do rozwiązywania wyżej określonych problemów
rozwoju wsi i kraju.
Gorące źródła geotermiczne
Ciepło unoszone z wnętrza skorupy ziemskiej na zasadzie konwekcji objawia się w postaci naturalnych źródeł
gorącej wody, pary nasyconej lub przegrzanej. Nazywa się je gorącymi źródłami geotermicznymi. Występują one
tylko w nielicznych miejscach następujących krajów: Salwadoru, Islandii, Japonii, Meksyku, Nowej Zelandii,
Stanów Zjednoczonych, Włoch i Rosji.
Wstępne wyniki badań wskazują na możliwości wykorzystywania energii geotermicznej w niektórych
obszarach Polski.
Przydatność energii wnętrza skorupy ziemskiej jest ograniczona. Nie może ona bowiem znaleźć zastosowania
w procesach wymagających ciepła wysokotemperaturowego.
Energia kinetyczna wiatrów
Wadą elektrowni wiatrowych jest wpływ wahań pogody. Mogą one stać się nieistotne z punktu widzenia
wykorzystywania energii kinetycznej wiatrów pod warunkiem rozwiązania problemu magazynowania energii.
Najbardziej realnym sposobem magazynowania energii jest produkcja wodoru wytwarzanego metodą
elektrolityczną.
Istnieje możliwość lokalizacji generatorów na sztucznych wyspach zwanych „farmami wietrznymi” w pobliżu
brzegów morskich. Korzyści są oczywiste. Prędkość wiatrów na wybrzeżu jest na ogół dwukrotnie większa aniżeli
na lądzie. Ponieważ moc generatorów wiatrowych jest proporcjonalna do trzeciej potęgi prędkości wiatru, generator
umieszczony na morzu może produkować 8-krotnie więcej energii w porównaniu z generatorem zlokalizowanym
na lądzie. Ponadto problem zajęcia terenu przestaje istnieć.
Wahania pogody nie zezwalają na planowanie znacznego udziału generatorów wietrznych w sektorze energii
elektrycznej. Chociaż istniałyby możliwości instalowania wymaganej mocy farm wietrznych, nie mogą stanowić
źródła, które likwidowałoby całkowicie ewentualny deficyt energii elektrycznej.
Energia rzek
Energię potencjalną i kinetyczną rzek wykorzystuje się do napędu turbin wodnych instalowanych w
elektrowniach wodnych. Energia potencjalna, określona położeniem zbiornika wodnego względem turbiny, jest
przemieniana na energię kinetyczną. Energię kinetyczną determinuje prędkość przepływu strumienia wody.
Światowe potencjalne zasoby energii rzek wynoszą 2,857 mln MW. Aktualnie wykorzystuje się zaledwie 0,152
mln MW. Należy zauważyć, że elektrownie wodne charakteryzują się niskimi kosztami eksploatacji i wysokimi
kosztami inwestycyjnymi z uwagi na konieczność budowy zbiorników wodnych.
4
Ze względu na szybki rozruch i szybkie wchodzenie na pełną moc elektrownie wodne są szczególnie
przydatne dla pokrywania szczytowego zapotrzebowania na energię. Ze względu na wysokie koszty inwestycyjne
mogą znaleźć zastosowanie, gdy mała retencja wodna miałaby dodatkowo spełniać, miedzy innymi funkcję
gromadzenia wody, która byłaby wykorzystywana do nawadniania roślin, szczególnie biomasy lignocelulozowej.
Energia biomasy
Biomasa jest formą gromadzenia energii słonecznej, w wyniku którego rośliny produkują węglowodany z
dwutlenku węgla zawartego w atmosferze i wody w obecności promieniowania słonecznego. Energia gromadzona
w formie organicznej powstałej w wyniku fotosyntezy stanowi potencjalną energię zasobów biomasy: organicznej
materii drzew i materii produktów spożywczych.
Skład chemiczny biomasy tworzą: węgiel, wodór i tlen. Energię uzyskiwaną w wyniku przetwarzania biomasy
można określać mianem bioenergii.
Rozróżnia się biomasę lignocelulozową jako roślinę wyłącznie energetyczną oraz biomasę roślin
spożywczych.
Biomasę lignocelulozową, jako materię organiczną drzew, tworzą trzy podstawowe składniki: celuloza,
hemiceluloza, lignina. Ta forma biomasy jest reprezentowana przez rośliny energetyczne jak: wierzba, ślazowiec
pensylwański i trawy energetyczne, między innymi takie jak miskantus.
Biomasę w formie roślin konsumpcyjnych stanowią tradycyjne uprawy spożywcze, takie jak zboża, rzepak
buraki cukrowe i inne okopowe. Podstawowymi składnikami tych roślin są cukry i skrobia. Znanymi cukrami
występującymi w roślinach są sacharydy i glukoza.
Podstawowy czynnikiem decydującym o tym, które rośliny mogą być wykorzystywane
do celów energetycznych jest to aby:
- energia zawarta w biomasie przewyższała znacznie energię potrzebną na jej uprawę i pozyskanie. Stosunek tych
dwóch wielkości określa się mianem sprawności energetycznej przetwarzania.
Największą wartość tego stosunku dla biomasy roślin konsumpcyjnych charakteryzuje
się pszenica i rzepak, wynosi ona odpowiednio 1.05 i 1.02. Wartość energetyczna żyta i
ziemniaków wynosi 0.69 i 0.66 [3 str. 102].
Oznacza to, że biomasa roślin spożywczych nie może być rozważana jako alternatywa dla paliw
ropopochodnych. Może natomiast przyczyniać się do czystości powietrza atmosferycznego na terenach o dużym
zagęszczeniu pojazdów mechanicznych. Wynika to z faktu, że spaliny silników wewnętrznego spalania
samochodów zawierają nie spalone tlenki węgla i węglowodory. Pierwsze powodują wylew krwi do mózgu, drugie
są przyczyną powstawania chorób nowotworowych.
Jednakże, należy podkreślić, że zyski na ekologii i pozytywny bilans dwutlenku węgla, nie kompensują strat
ekonomicznych. Nie mogą dlatego być uważane jako mogące przyczyniać się do rozwiązywania podstawowych
problemów wsi i kraju.
Biomasa lignocelulozowa charakteryzuje się znaczną wartością sprawności energetycznej przetwarzania jej do
wtórnych nośników energii, wynoszącą nawet ponad 14. Ze względu na wysokie koszty pozyskiwania jej,
bezpośrednie wykorzystywanie jako pierwotnego nośnika energii, zastępując węgiel, przy obecnych cenach węgla
czyniłyby ją nie konkurencyjną wobec paliw kopalnych.
Mając na uwadze możliwość osłabiania efektu cieplarnianego, nie uwzględniając obecnie opłacalności
ekonomicznej, biomasa lignocelulozowa po zgazowaniu mogłaby być wykorzystywana w niedalekiej przyszłości
jako źródło wodoru w ceramicznych ogniwach paliwowych o jednostkowej mocy 20-50 kW, 250 kW do 1 MW
[7]. Są one opracowywane w ramach projektu badawczego przez Konsorcjum 9 instytucji w UE, na który
przeznaczono 5.8 mln Euro. Pierwsze jednostki demonstracyjne mają być osiągalne w końcu obecnej dekady.
Oczekuje się, że komercjalizacja tego typu ceramicznych ogniw paliwowych nastąpi w połowie następnej dekady.
Biomasa lignocelulozowa może wspólnie z węglem kopalnym oraz mionowo katalityczną syntezą jądrową
uczestniczyć w produkcji metanolu stosując technologię opatentowaną przez Konsorcjum „Bioenergia na Rzecz
Rozwoju Wsi” [8].
Odpady zawierające substancję materialną [9]
W szeregu instytucjach naukowych takich krajów jak USA, Belgii, Holandii, Korei, Niemiec, opracowuje się
technologie bezpośredniej przemiany substancji materialnej, zawartej w ściekach komunalnych i przemysłowych,
bezpośrednio w energię elektryczną. Są to mikrobiologiczne ogniwa paliwowe wykorzystujące bakterie [8-16].
5
Istotą mikrobiologicznego ogniwa paliwowego, jest to, że mikroorganizmy „czerpią” elektrony bezpośrednio z
atomów wodoru, zawartego w molekułach związków organicznych, stanowiących ciekłe odpady, w sensie
pierwotnych nośników energii. Tworzą w ten sposób prąd elektronów, a więc prąd elektryczny.
Skala możliwej substytucji energii nieodnawialnej ściekami będzie obejmować:
- wszelkie ścieki komunalne na terenach zurbanizowanych, ścieki produkcji roślinnej i przemysłowej oraz ścieki
gospodarstw domowych na terenach nie zurbanizowanych.
Omawiane technologie mogą być osiągalne w bliskiej przyszłości. Rozwój technologii mikrobiologicznych
ogniw paliwowych nie będzie wymagał znacznych nakładów finansowych, tak jak w przypadku innych źródeł
odnawialnych względnie energii jądrowej.
Ponadto, stosując mikrobiologiczne ogniwa paliwowe można by nie tylko „czerpać” bezpośrednio energię ze
ścieków, ale także utylizować je do czystej wody, oszczędzając znaczne sumy pieniędzy.
Dla przykładu, koszt utylizacji 125 litrów ścieków rocznie w USA wynosi 25 USD. Według prof. Bruce
Logana, USA, twórcy technologii „czerpania” elektronów ze ścieków, wartość potencjalnej energii zawartej w
ściekach jest około 10-krotnie większa niż stanowi koszt ich utylizacji. Technologia w skali pilotowej ma być
osiągalna za 1 do 3 lat a komercjalizacja w ciągu 10 lat. Słowa te zostały wypowiedziane w 2004 roku i
opublikowane przez The American Society of Mechanical Engineers.
5 Uwagi końcowe
Brak jest globalnie dostępnych odnawialnych źródeł energii, które mogłyby być wykorzystywane w układach
energetycznych. Brak jest także lokalnie dostępnych odnawialnych źródeł energii, które mogłyby współzawodniczyć pod względem ekonomicznym z nieodnawialnymi źródłami energii jakimi są paliwa kopalne. Jedyny wyjątek
to biomasa roślin spożywczych. Nie dlatego, że może współzawodniczyć z paliwami ropopochodnymi, ale przede
wszystkim dlatego aby zmniejszać w aglomeracjach miejskich wpływ użytkowania tych paliw w silnikach
wewnętrznego spalania na zdrowie ludności zamieszkującej te aglomeracje.
Świat zdaje sobie sprawę z tego, że maksymalny udział odnawialnych źródeł energii może stanowić jedynie
20 % przyszłego zapotrzebowania na energię. Ma ono wzrosnąć w 2045 roku w stosunku do 2000 roku o 50 %.
Dlatego kraje wysoko rozwinięte skupiają się na możliwie szybkiej komercjalizacji technologii generatorów
energii o wysokiej sprawności, ekonomicznie opłacalnych. Mają one przyczyniać się do zmniejszania zapotrzebowania na pierwotne nośniki energii.
Są to ogniwa paliwowe, które tworzą prąd elektryczny z elektronów bezpośrednio czerpanych z atomów
wodoru.
Jedynym produktem ubocznym ogniw paliwowych jest woda. Oznacza to, że produkcja energii z wodoru jest
neutralna wobec środowiska naturalnego.
Ażeby produkcja energii przez ogniwa paliwowe była całkowicie neutralna wobec środowiska, pozyskiwanie
wodoru też musiałoby być neutralne. Ten przypadek może jedynie zaistnieć, gdy źródłem wodoru byłaby energia
kinetyczna wiatru wykorzystywana w procesie elektrolizy wody. Jednakże wymagana energia dla wyprodukowania
wodoru przewyższa wartość energii zawartej w wyprodukowanym wodorze. Z tego względu odnawialne źródła
energii, manifestujące się w postaci energii elektrycznej, wykorzystywanej w elektrolizie wody będą miały
ograniczone znaczenie w bezpośrednim wykorzystywaniu wodoru w ogniwach paliwowych.
Oznacza to, że świat nie może rezygnować z nieodnawialnych źródeł energii. Nie może też dlatego, że nośnik
wodoru jakim byłby metanol, pozyskiwany przy wykorzystywaniu biomasy lignocelulozowej byłby kilkakrotnie
droższy w porównaniu z metanolem uzyskiwanym z węgla kopalnego.
Technologia produkcji metanolu, zawarta w polskim patencie, mogłaby tworzyć cykl metanolu w skali
globalnej, który by spełniał równocześnie, sprzeczne z punktu widzenia możliwości korzystania z węgla kopalnego,
dwa dążenia ludzkości: zachowanie klimatu ziemskiego dla przyszłych pokoleń oraz zrównoważoną przyszłość
cywilizacji.
Daje to Polsce realną szansę rozwiązać problemy wsi, łagodzenia zadłużenia kraju oraz stać się
energetycznie samowystarczalną w horyzoncie 2030 roku. Szczególnie dlatego, że koszty produkcji metanolu
według patentu Konsorcjum [3, str. 146], mogą być porównywalne z kosztami produkcji metanolu
wyłącznie z węgla kopalnego [4]. Stwarza to także szansę produkcji paliwa XXI wieku nie tylko opłacalnej
ekonomicznie, ale równocześnie spełniającej warunek neutralności wobec efektu cieplarnianego.
Reasumując, należy stwierdzić co następuje:
Wyłączny udział jakichkolwiek odnawialnych źródeł energii nie będzie mógł przyczyniać się do rozwoju
podstawowych problemów wsi i kraju, jak wyrównywanie luki ekonomicznej i cywilizacyjnej pomiędzy wsią i
6
miastem oraz zmniejszania zadłużenia kraju, względnie tworzenie podstaw do samowystarczalności kraju. Dotyczy
to szczególnie biopaliw wytwarzanych jedynie z biomasy roślin spożywczych.
Nie jest ze wszech miar możliwe ażeby Polska, której zadłużenie obecnie wzrasta każdego roku o dalsze 10
mld USD, uprawiała rzepak na 2 milionach hektarów, dotując nie tylko producentów rzepaku ale także
producentów przetwarzających rzepak do biopaliw. W konsekwencji dodatkowo kumulujące się zadłużenie Polski,
wynoszące w 2006 roku 160 mld USD, będzie prowadzić do katastrofy ekonomicznej kraju.
Nie jest także możliwe wytwarzać metanol jedynie z biomasy lignocelulozowej. Koszt produkcji byłby
kilkakrotnie wyższy w porównaniu do kosztów produkcji wyłącznie z węgla. Nie mogłoby to być zaakceptowane
przez system motoryzacyjny świata, stanowiący siłę napędową rozwoju cywilizacji, ze względu na możliwość
zaistnienia światowego kryzysu.
Jedynie metanol z biomasy, węgla kopalnego przy udziale neutronów o wysokich energiach mógłby spełniać
określone wymagania przyszłego rynku, którego produkcja i użytkowanie byłyby neutralne wobec efektu
cieplarnianego.
Opłacalność ekonomiczna produkcji metanolu, według patentu polskiego, będzie rosła w miarę wzrostu
udziału węgla kopalnego w jego produkcji. Koszty produkcji biomasy wyznacza głównie powierzchnia jej uprawy.
Natomiast wzrost udziału węgla w produkcji metanolu, a tym samym wzrost opłacalności ekonomicznej produkcji,
będzie wzrastał w miarę wzrostu wydajności biomasy z hektara uprawy. W konsekwencji będzie następował wzrost
zdolności asymilacyjnej biomasy, stwarzając szansę zwiększania udziału węgla w produkcji metanolu.
I to jest istotą tworzenia podstaw dla rozwiązywania problemu bezrobocia bezpośrednio na obszarach
wiejskich, poprzez czynienie produkcji metanolu przy udziale biomasy opłacalną ekonomicznie. W konsekwencji
spowoduje to wzrost PKB odniesiony do hektara użytków rolnych, stworzy szansę finansowania małej retencji
wodnej, stanowiącej około 10 mld USD na nawadnianie 1 miliona ha użytków rolnych.
Literatura
1. Ciechanowicz W., Mion jako katalizator w globalnym cyklu paliwowym XXI wieku, AURA 1/2007.
2. Ciechanowicz W., Główne tezy programu Konsorcjum „Bioenergia na Rzecz Rozwoju Wsi”, AURA 2/2007.
3. Ciechanowicz W., Szczukowski S., Paliwa i Energia XXI Wieku szansą Rozwoju Wsi i Miast, Oficyna Wydawnicza
W I T, Warszawa 2006.
4. Commercial–Scale Demonstration of The Liquid Phase Methanol (LPMEOH TM) Process, Project
Performance Summary, Clean Coal Technology Demonstration Program, June 2004.
5. Ciechanowicz W., Energia Środowisko i Ekonomia, IBS, PAN 1-wyd. 1995, 2-gie wyd. 1997.
6. Ciechanowicz W., Bioenergia a Energia Jądrowa, Wyższa Szkoła Informatyki Stosowanej i Zarządzania,
Warszawa 2001.
7. Fuel Cell Industry Report, March 2006 Vol. 8. No. 3.
8. Ciechanowicz W., Szczukowski S., Patent P 365770, Sposób wytwarzania metanolu, 2004.
9. Ciechanowicz W., Mikrobiologiczne ogniwa paliwowe przetwarzające ścieki organiczne bezpośrednio do elektryczności, w przygotowaniu do publikacji.
Download