SYSTEM OCENY TOPOGRAFII POWIERZCHNI NA PODSTAWIE DANYCH REPREZENTUJĄCYCH PROFILE POWIERZCHNI Prof. dr hab. inż. Wojciech Kacalak Politechnika Koszalińska SYSTEM OCENY TOPOGRAFII POWIERZCHNI NA PODSTAWIE DANYCH REPREZENTUJĄCYCH PROFILE POWIERZCHNI XXXI NAUKOWA SZKOŁA OBRÓBKI ŚCIERNEJ 10-12.09.2008 Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 1 36 ©WK Parametry chropowatosci powierzchni a parametry zarysu Właściwości eksploatacyjne powierzchni w znacznym stopniu zależą od jej cech stereometrycznych. Parametry charakteryzujące właściwości stereometryczne powierzchni różnią się, i to często znacznie, od parametrów wyznaczanych dla zarysu powierzchni. Pomijanie tych różnic lub opisywanie cech powierzchni na podstawie cech (parametrów) zarysu należy do częstych błędów oceny powierzchni. Wyznaczanie parametrów charakteryzujących cechy stereometryczne powierzchni poprzez profilografowanie z wierszowaniem jest operacją kosztowną i pracochłonną oraz wymagającą systemów umożliwiających takie pomiary. Zazwyczaj nie jest możliwe w urządzeniach przenośnych, stosowanych w pomiarach przedmiotów o dużych rozmiarach. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 2 36 ©WK Wyznaczanie parametrów 3D WIERZCHOŁKI POWIERZCHNI WIERZCHOŁKI ZARYSU Celem pracy jest opracowanie takiego systemu przetwarzania danych z profilografometru, który wykorzystując wyniki z jednego lub dwóch pomiarów (zarysów w jednym przekroju o długości określanej przez system lub dwóch pomiarów w przekrojach do siebie prostopadłych), oraz wykorzystując wiedzę zgromadzoną w formie reguł wnioskowania oraz w module sztucznych sieci neuronowych, pozwalałby na wyznaczenie licznego, komplementarnego zbioru parametrów stereometrycznych powierzchni. Możliwe byłoby ponadto wyznaczenie obrazu powierzchni o cechach statystycznych zgodnych z powierzchnią, na której przeprowadzono pomiar. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 3 36 ©WK Zmienność i złożoność struktury geometrycznej powierzchni Struktura geometryczna obrobionej powierzchni jest wynikiem nakładania się i kumulacji wielu elementarnych zmian w jej topografii. Zmienność i złożoność struktury stereometrycznej jest czynnikiem, który znacznie utrudnia i jej ocenę i powoduje, że wynik oceny jest skutkiem przetwarzania informacji niepełnej, niepewnej i, w pewnym zakresie, również nieścisłej. To wszystko powoduje, że dotąd nie opracowano wystarczająco dokładnych podstaw doboru takich zbiorów parametrów oceny, które byłyby zbiorami parametrów wystarczająco komplementarnych i zapewniających kompromis miedzy licznością zbioru, a wymaganą jakością oceny powierzchni określonego typu. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 4 36 ©WK Cechy przetwarzanych informacji INFORMACJA NIEPEŁNA INFORMACJA NIEPEWNA INFORMACJA NIEŚCISŁA Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 5 36 ©WK Problemy do rozwiązania Opracowanie systemu, pozwalającego na określenie wartości parametrów ocenianej powierzchni z wykorzystaniem danych o zarysie powierzchni, zapewniającego uzyskanie opisanych powyżej efektów, wymaga rozwiązania następujących problemów naukowych: Wyznaczenia relacji pomiędzy parametrami zarysu, a parametrami opisującymi stereometrię powierzchni, Opracowania uniwersalnych metod wnioskowania o cechach stereometrycznych powierzchni na podstawie danych z zarysu powierzchni, Optymalizacji i doboru warunków pomiarów oraz trenowania, testowania i weryfikacji systemu wnioskowania z wykorzystaniem metod sztucznej inteligencji, Opracowania metody prognozowania i generowania trójwymiarowych (pseudoprzestrzennych) obrazów powierzchni poddawanych pomiarom. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 6 36 ©WK System wnioskowania System wnioskowania o parametrach 3D na podstawie parametrów 2D Parametry zarysu 1 Parametry zarysu 2 SYSTEM GENEROWANIA ZBIORU PARAMETRÓW KOMPLEMENTARNYCH Parametry powierzchni SSN Nowe parametry i relacje dla powierzchni danego typu Schemat algorytmu wnioskowania o parametrach powierzchni na podstawie cech zbioru zarysów Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 7 36 ©WK Potrzeba automatyzacji analiz Potrzeba automatyzacji analiz danych GĘSTOŚĆ STRUMIENIA INFORMACJI = MOŻLIWOŚCI WYDOBYWANIA INFORMACJI Potrzeby poznawcze Oczekiwany zakres analiz Możliwości przetwarzania danych przez człowieka 2008 Czas Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 8 36 ©WK Nauka a nowe metody i wynalazki Bieganie do przodu na taśmie treningowej różni się od biegania do przodu. Nowe metody badawcze i wynalazki powodują, że naukowcy przestają drążyć, modelować i opisywać problemy, które należą już do przeszłości, a zaczynają zajmować się nowymi. Dokładniejsze poznanie starych problemów nie ma już znaczenia dla rozwoju nauki i zastosowań. NAUKA TYM BARDZIEJ WZMACNIA SWOJE ZNACZENIE IM SKUTECZNIEJ TWORZY NOWE WYNALAZKI, KTÓRE GENERUJĄ NOWE KIERUNKI BADAWCZE. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 9 36 ©WK Efekty a nakład pracy Efekty Linia satysfakcji dla niskich wymagań dotyczących efektu 100% Kierunek zmian wymagań w czasie Linia satysfakcji dla wysokich wymagań dotyczących efektu Linia efektów w funkcji nakładu pracy (wysiłku) Nakład pracy Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 10 36 ©WK Wizualizacja problemu Z 3D Zmax 2D Zmax p1 p2 p3 X p3 p2 p1 Y Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 11 36 ©WK Porównanie rozkładów wartości parametrów 2D i 3D 26 40 24 35 22 20 30 18 25 Liczność Liczność 16 14 12 10 20 15 8 10 6 4 5 2 0 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 Rt St 0 0,9 1,0 1,1 1,2 Wysokość [um] Porównanie wartości parametrów chropowatości zarysu (Rt) i powierzchni (St) 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 Rz Sz Wysokość [um] Porównanie wartości parametrów chropowatości zarysu(Rz) i powierzchni (Sz) Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 12 36 ©WK Porównanie rozkładów wartości parametrów 2D i 3D 35 30 30 Porównanie średnich wysokości wierzchołków zarysu (Rp) i powierzchni (Sp) 28 26 Porównanie średnich głębokości zagłębień zarysu (Rv) i powierzchni (Sv) 24 22 25 18 20 Liczność Liczność 20 15 16 14 12 10 10 8 6 5 4 2 0 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Rp 0 Sp -1,1 -1 -0,9 Wysokość [um] -0,8 -0,7 -0,6 -0,5 -0,4 Rv Sv Wysokość [um] Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 13 36 ©WK Porównanie rozkładów wartości parametrów 2D i 3D Parametry wyznaczone dla zarysu 2D ( i ) [m] P Rt Rz Rp Rv Parametry wyznaczone dla powierzchni 1,29 1,19 0,63 -0,56 St Sz Sp Sv 3D ( i ) [m] P 1,68 1,65 0,84 -0,85 P(2i )D / P(3i )D Rt:St Rz:Sz Rp:Sp Rv:Sv 0,77 0,72 0,75 0,66 Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 14 36 ©WK Zbiory parametrów Podstawowe parametry struktury geometrycznej powierzchni: PARAMETRY AMPLITUDOWE: o średnie arytmetyczne odchylenie chropowatości Sa, o średnie kwadratowe odchylenie chropowatości powierzchnie Sq, o maksymalna wysokość wzniesienia powierzchnie Sp, o maksymalna głębokość wgłębienia powierzchnie Sv, o wysokość nierówności St, o współczynnik skośności rozkładu rzędnych Ssk, o współczynnik skupienia rozkładu rzędnych Sku, o dziesięciopunktowa wysokość nierówności powierzchnie Sz, PARAMETRY PRZESTRZENNE: o gęstość wzniesień między określonymi przekrojami SPc, o gęstość wierzchołków nierówności powierzchni Sds, o wskaźnik tekstury powierzchni Str, o długość odcinka najszybszego zanikania funkcji autokorelacji Sal, o kierunek tekstury powierzchni Std, o wymiar fraktalny Sfd, PARAMETRY POWIERZCHNIOWE I OBJĘTOŚCIOWE, o udział nośny na zadanej wysokości STp, o wysokość obszaru nośności SHTp, o średnia objętość materiału Smmr, o średnia objętość pustek Smvr, PARAMETRY HYBRYDOWE, PARAMETRY FUNKCJONALNE, PARAMETRY KRZYWEJ NOŚNOŚCI. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 15 36 ©WK Współczynniki korelacji parametry przestrzenne parametry amplitudowe Sa Sq Sp Sv St Ssk Sku Sz Spc Sds Str Sal Std parametry powierzchniowe i objętościowe SHTp Smmr Sa 1.00 Sq 0.99 1.00 Sp 0.93 0.94 1.00 Sv 0.89 0.90 0.97 1.00 St 0.92 0.93 0.99 0.99 1.00 Ssk 0.07 0.08 0.10 -0.01 0.05 1.00 Sku -0.12 -0.12 -0.11 -0.05 -0.08 -0.57 1.00 Sz 0.94 0.95 0.99 0.99 0.99 0.06 -0.09 1.00 Spc 0.37 0.36 0.52 0.58 0.55 -0.15 0.00 0.51 1.00 Sds -0.20 -0.20 -0.19 -0.14 -0.17 -0.45 0.55 -0.17 -0.05 1.00 Str -0.02 -0.01 0.06 0.11 0.08 -0.31 0.38 0.06 0.27 0.04 1.00 Sal 0.01 0.03 0.05 0.03 0.04 0.07 -0.15 0.03 -0.07 -0.24 0.04 1.00 Std 0.00 0.00 0.04 0.07 0.05 0.00 0.11 0.06 0.07 0.03 0.33 0.24 1.00 SHTp 1.00 0.99 0.91 0.87 0.90 0.08 -0.12 0.92 0.31 -0.20 -0.05 0.01 -0.02 1.00 Smmr 0.88 0.89 0.95 0.98 0.97 -0.01 -0.06 0.97 0.57 -0.13 0.08 0.01 0.06 0.85 1.00 Smvr 0.92 0.93 0.99 0.96 0.99 0.10 -0.10 0.98 0.51 -0.18 0.07 0.05 0.05 0.90 0.95 Smvr 1.00 Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 16 36 ©WK Problem komplementarnego doboru zbioru parametrów Sa Sq Sp Sv St Ssk Sku Sz Korelacje parametrów amplitudowych powierzchni Sa Sq Sp Sv St Ssk Sku 1 0,996 1 0,704 0,527 1 0,904 0,809 0,712 1 0,844 0,851 0,963 0,883 1 0,0969 0,134 0,427 0,137 0,425 1 0,339 0,313 0,083 0,0862 0,0345 x 1 0,854 0,877 0,943 0,879 0,979 x 0,0711 Sz 1 Zasada doboru komplementarnego nie daje jeszcze wyniku, który można uznać za wystarczający. Konieczne jest uzupełnienie zbioru parametrów przez dane charakteryzujące zmienność parametrów (miary rozproszenia), relacje wartości parametrów horyzontalnych (2D) w kierunku prostopadłym i równoległym do śladów obróbkowych. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 17 36 ©WK Wnioski z analiz Do klasyfikacji powierzchni z grupy parametrów amplitudowych wybrano parametry: Sz, Ssk i Sku oraz stosunki Sz:Sa i Sz:Sp. Parametry Ssk i Sku przyjęto z uwagi na ich małą korelację z pozostałymi parametrami w tej grupie. Parametr Sz uwzględniono ze względu na wyraźne powiązanie informacyjne z pozostałymi parametrami. Parametr Sz informuje pośrednio o wysokości nierówności, a nie jest wrażliwy na wpływ pojedynczych przypadkowych wzniesień i wgłębień. Wykazuje również wyraźną korelację wynikającą z charakteru rozkładu rzędnych powierzchni z parametrami Sa i Sq. Stosunek Sz:Sa oraz Sz:Sp jest dobrą miarą wysmukłości nierówności. Parametr Sz ma wysokie zdolności uogólniające (jest wysoko skorelowany również z parametrami z grupy parametrów powierzchniowych i objętościowych) natomiast parametry Ssk i Sku, wrażliwe na charakterystyczne wzniesienia i wgłębienia pozwalają na uszczegółowienie informacji o kształcie powierzchni. Najważniejsze parametry jednak powinny wynikać z relacji między określonymi parametrami 2D (np. rozmieszczenie wierzchołków) we wzajemnie prostopadłych kierunkach, dlatego, iż szczególnie ważny jest kształt i rozmieszczenie obszarów styku kontaktujących się powierzchni. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 18 36 ©WK Dwa systemy: 1-środowisko VS.NET 2-środowisko MATLAB Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 19 36 ©WK St=f(Sa) Model: St=A*Sa^B y=(12,3009)*x^(,55652) 18 16 14 12 St 10 8 6 4 2 0 -2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 Sa Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 20 36 ©WK Sz=f(Sa) Model: Sz=A*Sa^B y=(11,1844)*x^(,628195) 16 14 12 Sz um 10 8 6 4 2 0 -2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 Sa um Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 21 36 ©WK Sp=f(Sa) Model: Sp=A*Sa^B y=(7,27626)*x^(,498696) 12 10 8 Sp um 6 4 2 0 -2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 Sa um Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 22 36 ©WK Sz=f(St) Model: Sz=A*St^B y=(,728254)*x^(1,08145) 18 16 14 12 Sz 10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 18 St Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 23 36 ©WK Sp=f(Sz) Model: Sp=A*Sz^B y=(,683416)*x^(,982582) 14 12 10 Sp um 8 6 4 2 0 -2 0 2 4 6 8 10 12 14 16 18 Sz um Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 24 36 ©WK Metody generowania obrazu powierzchni METODY GENEROWANIA OBRAZU POWIERZCHNI 1. Realizacja prostych metod symulacji procesów kształtowania obrabianej powierzchni 2. Generowanie ciągów zarysów o cechach zgodnych statystycznie z wyznaczonym zarysem (metoda tworzenia występów i wgłębień z danych posortowanych przedziałami o losowej długości – LPPL PLLP …, wymiana punktów o podobnych cechach w zarysie, 3. Generowanie powierzchni działania narzędzia i wykonywanie operacji zmiany rzędnych powierzchni przedmiotu, 4. Metody częstotliwościowe – kumulacja składowych harmonicznych o określonych amplitudach i częstościach, 5. Dobór i przekształcenia wzorców, pobieranych z bazy i modyfikowanych z wykorzystaniem danych z pomierzonego zarysu, 6. Składanie randomizowane generowanych występów 3D, dolin i wypływek o określonym stopniu losowości, 7. Tworzenie kompozycji wielomianów wysokiego stopnia o określonych cechach we wzajemnie prostopadłych kierunkach. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 25 36 ©WK Efekty stosowania systemu Efekty stosowania takiego systemu polegałyby na automatyzacji wnioskowania, a ponadto na: Skróceniu czasu potrzebnego do wyznaczenia parametrów i obrazu powierzchni od 20 do 100 razy, czyli średnio o ponad 20 minut w odniesieniu do jednej oceny powierzchni, Zapewnieniu wysokiego obiektywizmu i dokładności w klasyfikacji cech powierzchni, Upowszechnieniu kompleksowych ocen, których podstawą są parametry powierzchni, zamiast ocen pobieżnych i obarczonych znaczącymi błędami wskutek posługiwania się ocenami zarysu powierzchni, Opracowana metoda oraz aplikacje tworzące spójny system wnioskowania, mogłyby być użytkowane w dwojaki sposób: bezpośrednio u użytkownika systemu pomiarowego lub w formie usługi na serwerze, Świadczeniem usług mogłyby zajmować się firmy innowacyjne, co byłoby korzystne dla wysokiego po-ziomu ekspertów i świadczonych usług. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 26 36 ©WK Wady metod sztucznej inteligencji W MODELOWANIU Z WYKORZYSTANIEM SZTUCZNEJ INTELIGENCJI NALEŻY UWZGLĘDNIAĆ RÓWNIEŻ WADY I SKUTKI POCHODNE Do głównych należy: Wypieranie modeli wywodzących się z wiedzy jawnej przez modele o cechach wiedzy niejawnej. Wypieranie reguł i obliczeń matematycznych przez doraźne modele o słabej weryfikowalności ich poprawności. Rozwarstwienie wiedzy i umiejętności do wykorzystywania metod matematycznych (tworzenie modeli i wzorców) i umiejętności tylko korzystania z gotowych narzędzi, bez wiedzy o zawartych w nich procedurach. (Ta cecha już występuje powszechnie np. ANSYS, jednak ważne jest, aby narzędzia były dobre, a użytkownik potrafił interpretować wyniki i dobierać warunki ograniczenia). Osłabienie znaczenia cech inteligencji naturalnej i kreatywności, co może być ukrywane przez masowość przetwarzania danych. Upraszczanie wnioskowania kompensowane szybkością działania systemu obliczeniowego. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 27 36 ©WK Przetwarzanie informacji przez człowieka ZALETY człowieka w przetwarzaniu informacji WADY człowieka UMIEJĘTNOŚĆ ADAPTACJI DO ODBIORU INFORMACJI NIEPEWNEJ OGRANICZENIE PERCEPCJI DO KILKU (NAJCZĘŚCIEJ 5...9) STOPNI ZRÓŻNICOWANIA ODBIERANYCH SYGNAŁÓW OBNIŻANIE POZIOMU KONSERWATYZMU W PRZYPADKACH ZASKAKUJĄCYCH WARTOŚCI PIERWSZYCH DANYCH ŚWIADOME I PODŚWIADOME KORZYSTANIE Z UMIEJĘTNOŚCI ODKRYWANIA NOWYCH ZALEŻNOŚCI w przetwarzaniu informacji BARDZO SILNE OGRANICZENIE ILOŚCI DANYCH, JAKIE MOGĄ BYĆ JEDNORAZOWO ZAPAMIĘTANE SKŁONNOŚĆ DO KONSERWATYZMU" I ULEGANIA PRESJI OCZEKIWANIA NA INFORMACJĘ SPODZIEWANĄ, SUBIEKTYWNE I BŁĘDNE SZACOWANIE RAWDOPODOBIEŃSTW ILOCZYNU I SUMY ZDARZEŃ Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 28 36 ©WK Zalety i wady człowieka w przetwarzaniu informacji ZALETY człowieka w przetwarzaniu informacji OBNIŻANIE POZIOMU KONSERWATYZMU (OPÓŹNIENIA W DOKONYWANIU PRZESZACOWAŃ PRAWDOPODOBIEŃSTWA ZDARZEŃ WRAZ Z NAPŁYWANIEM NOWYCH INFORMACJI), GDY ILOŚĆ DANYCH JEST MAŁA, I NAGRADZANA JEST DOKŁADNOŚĆ A NIE WYDAJNOŚĆ WADY człowieka w przetwarzaniu informacji BŁĘDY W ODKRYWANIU NOWYCH ZALEŻNOŚCI, WYNIKAJĄCE: 1. Z TENDENCJI DO POMIJANIA WPŁYWU WIELKOŚCI PRÓBKI, 2. SKŁONNOŚCI DO PRZYPISYWANIA WIĘKSZYCH PRAWDOPODOBIEŃSTW INFORMACJOM ŁATWIEJ ZAPAMIĘTYWANYM 3. SKŁONNOŚCI DO PRZEDWCZESNEGO ODRZUCANIA MOŻLIWYCH WSPÓŁZALEŻNOŚCI LUB 4. UZNAWANIA ZA OCZYWISTĄ WSPÓŁZALEŻNOŚĆ CECH, KTÓRYCH WARTOŚCI SĄ TYLKO SKORELOWANE W DANEJ REALIZACJI. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 29 36 ©WK Szacowanie prawdopodobieństw zdarzeń Czy i w jakim stopniu subiektywne prawdopodobieństwa podlegają takim samym prawom jak prawdopodobieństwa obiektywne? Wyniki badań wskazują, iż u osoby podejmującej decyzję występuje skłonność: 1. Do zawyżania prawdopodobieństwa iloczynu zdarzeń niezależnych A i B (sytuacji, gdy zajdzie zarówno zdarzenie A jak i zdarzenie B) 2. Do zaniżania prawdopodobieństwa sumy zdarzeń A i B (sytuacji, gdy zajdzie przynajmniej jedno z tych zdarzeń) 3. W przypadku możliwego wystąpienia jednego ze zdarzeń niezależnych A i B, gdy zdarzenie A występowało z częstością większą od oczekiwanej, decydent ulega skłonności do zawyżania prawdopodobieństwa oczekiwanego zdarzenia B. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 30 36 ©WK Podsumowanie Do efektów wynikających z opracowania opisywanego SYSTEMU można zaliczyć: 1. Stworzenie systemu, zapewniającego niskie koszty szybkiej i kompleksowej oceny właściwości stereometrycznych powierzchni na podstawie powszechnie stosowanych pomiarów liniowych – wielokrotne (nawet do kilkudziesięciu razy) zmniejszenie czasu wyznaczania parametrów opisujących strukturę stereometryczną powierzchni. 2. Powszechną przydatność systemu – obecnie w Polsce nabywa się ponad 100 profilografometrów rocznie, co przekłada się na liczbę ponad 1000 użytkowanych urządzeń. Liczbę dokonywanych pomiarów cech stereometrycznych powierzchni można oszacować jako zbliżoną do 1,5 miliona pomiarów rocznie. 3. Zachowanie zgodności zastosowanych metod z dotychczasowymi przyrządami i parametrami oceny nierówności powierzchni, co oznacza, że dotychczasowe wyposażenie metrologiczne do pomiarów liniowych można będzie wykorzystać do oszacowania stereometrycznych parametrów powierzchni. Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 31 36 ©WK Dziękuję za uwagę DZIĘKUJĘ ZA UWAGĘ Wy łączono nadzorowanie zdarzeń << << >> St ar t e a 17.05.2008 32 36 ©WK