STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza stan rzeczy. Pierwotne znaczenie słowa statystyka wiązało się ze zbieraniem informacji związanych z demografią i gospodarką. Termin statystyka jako nauka pojawił się znacznie później. Dynamiczny rozwój statystyki matematycznej nastąpił od przełomu XIX i XX wieku. Związane jest to z rosnącą rolą eksperymentu (doświadczenia), jako źródła wiedzy człowieka. Doświadczalnictwo – planowanie doświadczeń z uwzględnieniem oraz analiza danych doświadczalnych z użyciem metod statystycznych Doświadczalnictwo rolnicze w zorganizowanej formie rozwinęło się w połowie XIX wieku. Pierwsza stacja doświadczalna powstała w Rothamsted w 1843 r., natomiast w Polsce podobne doświadczenia zostały zakładane w końcu XIX wieku. STATYSTYKA to nauka, której przedmiotem zainteresowania są metody pozyskiwania i prezentacji, a przede wszystkim analizy danych opisujących zjawiska masowe. Metody statystyczne oparte są na rachunku prawdopodobieństwa. Różnica między rachunkiem prawdopodobieństwa a statystyką There are three kinds of lies: lies, damned lies, and statistics Benjamin Disraeli (1804-1881) m.in. premier Wielkiej Brytanii ZDARZENIE ELEMENTARNE to możliwy wynik doświadczenia losowego. Wszystkie takie możliwe wyniki tworzą zbiór zdarzeń elementarnych. Na przykład zbiór zdarzeń elementarnych przy pojedynczym rzucie monetą składa się z dwóch elementów tj. może wypaść orzeł, bądź reszka. POPULACJA STATYSTYCZNA (inaczej populacja generalna) to zbiór elementów, podlegających badaniu statystycznemu. Elementy populacji są do siebie podobne pod względem badanej cechy, ale nie są identyczne. Np. osoby zamieszkujące w pewnym regionie, rośliny pewnej odmiany pszenicy, kolonie grzybów pleśni, produkty jednego rodzaju produkowane przez pewien zakład itp. Nie wszystkie populacje muszą istnieć w rzeczywistości, niektóre z nich mają charakter wyłącznie hipotetyczny. (np. zakładamy to przy przeprowadzaniu doświadczenia planowanego) Elementy populacji statystycznej nazywamy jednostkami statystycznymi, zaś badana cecha to cecha statystyczna. Ze względu na liczebność zbioru, populacje można podzielić na: -populacje skończone - np. powiaty w woj. mazowieckim (określona liczba w danym czasie nie ulegająca zmianie) - populacje nieskończone – w rzeczywistości raczej nie istnieją, ale często zakłada się, przy bardzo dużej liczebności np. rośliny pewnego gatunku, że reprezentują one populację nieskończoną, gdyż teoretycznie można zwiększać ciągle ich liczebność Badanie populacji Badanie wyczerpujące (pełne) - badaniu poddana jest cała populacja. Badanie niewyczerpujące (częściowe) - badaniu poddana jest tylko część populacji (wybrane jednostki). Populacja próbna, próba - ta część populacji generalnej, która bezpośrednio podlega badaniu. Próbę nazywamy reprezentatywną, jeśli stanowi ona taką część populacji, która zachowuje wszelkie właściwości struktury całej populacji. Dla zapewnienia reprezentatywności próby konieczne jest spełnienie dwóch warunków: − losowości (sposób tworzenia próby powinien zapewnić każdej jednostce populacji jednakową szansę dostania się do tej próby; − niezależności (sposób dodawania następnej jednostki do próby powinien być niezaleŜny od pobranych juŜ jednostek). ZMIENNA LOSOWA, to funkcja, która zdarzeniom losowym przypisuje liczby. Na przykład, losując z pewnej populacji jednego osobnika przypisujemy mu jego wagę, lub też rzucając monetą przyjmujemy, że wyrzucenie reszki będzie oznaczało wartość 0 a wyrzucenie orła – wartość 1. Zmienne losowe dzielimy na: - Skokowe (dyskretne) - Ciągłe 1 0 ZMIENNE LOSOWE (CECHY) -skokowe (dyskretne), które przyjmują skończoną liczbę wartości, zazwyczaj wartości są liczbami całkowitymi z pewnego przedziału (np. liczba oczek na kostce sześciennej do gry, liczba osób w rodzinie, liczba kwiatów na roślinie itp.) - ciągłe, czyli takie które przyjmują niekończenie wiele wartości, np. wszystkie liczby rzeczywiste z pewnego przedziału (przykłady: wzrost człowieka, zawartość cukru w jabłkach, temperatura powietrza). Często takie zmienne podajemy z pewną dokładnością, wynikającą z ograniczeń przyrządów pomiarowych (np. termometru, wagi itp.) ale należy mieć świadomość, że dysponując dokładniejszym przyrządem pomiarowym możemy ustalić wartość z coraz większą dokładnością. Własności rozkładu cechy ilościowej: • przeciętny poziom wartości cechy (tendencja centralna), • zróżnicowanie (dyspersja), • skośność (asymetria). Ocenę tych własności można przeprowadzić posługując się charakterystykami liczbowymi nazywanymi parametrami rozkładu. Parametry klasyczne – obliczane na podstawie wszystkich wyników, Parametry pozycyjne - wyznaczane na podstawie miejsca obserwacji w szeregu statystycznym lub częstości ich występowania. PARAMETRY POŁOŻENIA - opisują przeciętny poziom wartości cechy: • wartość średnia (np. średnia arytmetyczna, harmoniczna, geometryczna), • wartość typowa – najczęściej występująca (dominanta), • wartość o ustalonej pozycji w rozkładzie (np. wartość w środku rozkładu - mediana, wartość w jednej czwartej rozkładu - kwartyl pierwszy lub trzech czwartych rozkładu – kwartyl trzeci, wartość w jednej dziesiątej rozkładu – decyl pierwszy itp.) Średnia arytmetyczna dla próby prostej x1, x2, ...xn: Średnia arytmetyczna dla szeregu rozdzielczego o liczbie klas k i liczebności nk w k-tej klasie: Średnia harmoniczna dla próby prostej x1, x2, ...xn: Średnia geometryczna dla próby prostej x1, x2, ...xn: Dominanta – wartość występująca najczęściej w próbie (dominująca, wartość modalna, moda). Mediana (wartość środkowa) – średnia pozycyjna; rozdziela całą próbę na dwie części o równych liczebnościach w ten sposób, że w jednej z nich znajdują się jednostki o wartościach nie wyższych od mediany, a w drugiej o wartościach nie niższych od mediany. (dla znalezienia mediany trzeba najpierw uporządkować próbę według wielkości jej elementów, tzn. od ich wartości najmniejszej do największej lub odwrotnie) PARAMETRY DYSPERSJI (rozproszenia) – opisują zróżnicowanie, zmienność w próbie: • wariancja • odchylenie standardowe (pierwiastek z wariancji) • współczynnik zmienności PARAMETRY ASYMETRII – opisują skośność: X − Me A= s Współczynnik skośności przyjmuje wartość zero dla rozkładu symetrycznego, wartości ujemne dla rozkładów o lewostronnej asymetrii (wydłużone lewe ramię rozkładu) i wartości dodatnie dla rozkładów o prawostronnej asymetrii (wydłużone prawe ramię rozkładu). PRAWDOPODOBIEŃSTWEM (wg Laplace) zajścia zdarzenia A nazywamy iloraz liczby zdarzeń sprzyjających zdarzeniu A do liczby wszystkich możliwych przypadków |Ώ|, zakładając, że wszystkie przypadki wzajemnie się wykluczają i są jednakowo prawdopodobne. Na przykład przy pojedynczym rzucie kostką sześcienną prawdopodobieństwo wyrzucenia dokładnie 3 oczek wynosi 1/6 gdyż wszystkich możliwych zdarzeń jest 6 a tylko jedno spełnia ten warunek. Prawdopodobieństwo przyjmuje wartości z przedziału [0;1]. Wartość prawdopodobieństwa bliższa 1 oznacza zdarzenie bardziej prawdopodobne, czyli zachodzące częściej, natomiast wartość prawdopodobieństwa bliższa 0 oznacza zdarzenie, które jest mało prawdopodobne, czyli zachodzi rzadziej. ROZKŁAD PRAWDOPODOBIEŃSTWA ZMIENNEJ LOSOWEJ zbiór wartości zmiennej losowej oraz prawdopodobieństwa, z jakimi są te wartości przyjmowane. np. dla pojedynczego rzutu kostką rozkład prawdopodobieństwa można przedstawić następująco: xi 1 2 3 4 5 6 pi 1/6 1/6 1/6 1/6 1/6 1/6 Jedynie dla rozkładów zmiennych skokowych możliwe jest przedstawienie rozkładu prawdopodobieństwa w takiej postaci jak powyżej. Niemożliwe jest to w przypadku rozkładów ciągłych, gdyż nie możemy określić prawdopodobieństwa, że zmienna przyjmie określoną wartość. Możemy natomiast określić prawdopodobieństwo, że zmienna przyjmie wartość z określonego przedziału. Typowe rozkłady zmiennych losowych skokowych • Rozkład dwupunktowy • Rozkład dwumianowy (Bernoulliego) • Rozkład Poissona 1) Rozkład dwupunktowy Z rozkładem dwupunktowym mamy do czynienia wówczas, gdy w wyniku doświadczenia możemy uzyskać tylko jedną z dwóch wartości zmiennej losowej: x1 lub x2 z prawdopodobieństwami odpowiednio p oraz 1-p. W szczególnym przypadku, gdy x1=0 oraz x2=1 rozkład ten nazywany jest rozkładem zero-jedynkowym. Rozkład dwupunktowy mają wszystkie zjawiska losowe, w których są tylko dwie możliwości np. wystąpienie opadów w pewnym dniu, odpowiedź ankietowanej osoby na pytanie czy pali papierosy, wykiełkowanie nasionka (we wszystkich tych zjawiskach są tylko dwie wykluczające się możliwości) lub Rozkład dwupunktowy 2) Rozkład dwumianowy (Bernoulliego) Rozkład dwumianowy występuje wówczas, gdy przeprowadza się n jednakowych doświadczeń, z których każde może zakończyć się jednym z dwóch wyników: „sukcesem” z prawdopodobieństwem p lub „porażką” z prawdopodobieństwem 1-p. Zmienną losową X w tym eksperymencie jest liczba sukcesów w n próbach. Przykłady rozkładu dwumianowego mogą być podobne jak powyżej, tylko w przypadku większej liczby powtarzanych zdarzeń np. jeśli pytamy 10 osób czy pala papierosy, to liczba osób które odpowiedzą twierdząco jest zmienną mająca rozkład dwumianowy. Rozkład prawdopodobieństwa w rozkładzie dwumianowym jest określony wzorem: n k P( X = k ) = ⋅ p ⋅ ( 1 − p )n−k k gdzie n n! = k k!⋅(n − k )! k-liczba sukcesów; n – liczba prób; p- prawdopodobieństwo sukcesu Przykładowy rozkład wartości prawdopodobieństwa dla rozkładu dwumianowego dla n = 10 oraz p=0,5 3) Rozkład Poissona Jest rozkładem zmiennej losowej skokowej, z którym mamy do czynienia w przypadku określania prawdopodobieństwa zajścia zdarzeń stosunkowo rzadkich i niezależnych od siebie, takich jak np. liczba usterek w produkowanej partii materiału, liczba osób nieobecnych na zajęciach w pewnym dniu. Rozkład Poissona jest przybliżeniem rozkładu Bernoulliego dla dużych prób i przy małym prawdopodobieństwie zajścia zdarzenia („sukcesu”). λk −λ P( X = k ) = ⋅ e k! e - podstawa logarytmów naturalnych (e=2,718…) λ - stała, która jest wartością oczekiwaną i równocześnie wariancją rozkładu, Przykładowe rozkłady wartości prawdopodobieństw dla rozkładu Poissona dla λ = 2 oraz λ =10 Typowe rozkłady zmiennych losowych ciągłych 1) Rozkład jednostajny 2) Rozkład normalny 1) Rozkład jednostajny Jest to najprostszy z rozkładów zmiennej losowej ciągłej. Mamy z nim do czynienia wtedy, gdy prawdopodobieństwo zajścia zdarzenia jest stałe w pewnym przedziale [a, b]. Przykładem zmiennej mającej rozkład jednostajny jest np. czas oczekiwania na przystanku na autobus przy założeniu, że autobus jeździ dokładnie co np. 20 min. a my wychodzimy nie znając rozkładu jazdy tego autobusu (oczywiście sytuacja jest zupełnie teoretyczna, gdyż zakładamy, że autobus nigdy nie przyjeżdża wcześniej ani się nie spóźnia). Czas oczekiwania na autobus jest w takim wypadku między 0 a 20 min. 2) Rozkład normalny Zwany także rozkładem Gaussa-Laplace'a jest najczęściej spotykanym w naturze rozkładem zmiennej losowej ciągłej. Ciągła zmienna losowa X ma rozkład normalny o wartości oczekiwanej m (często zamiast µ używamy oznaczenia literą µ) i odchyleniu standardowym σ co oznaczamy X~N(m,σ2) lub X~N(m,σ). Funkcja gęstości prawdopodobieństwa rozkładu normalnego standardowego (o średniej równej 0 i odchyleniu standardowym równym 1) oraz wartości prawdopodobieństwa dla wartości zmiennej. Przykładowe funkcje gęstości prawdopodobieństwa dla rozkładu normalnego o różnych wartościach średnich i tych samych odchyleniach standardowych Przykładowe funkcje gęstości prawdopodobieństwa dla rozkładu normalnego o takich samych wartościach średnich i różnych odchyleniach standardowych Standaryzacja zmiennych – jest to przekształcenie (transformacja) wartości zmiennej wg następującego wzoru: X −m Z= σ gdzie, m- średnia, σ- odchylenie standardowe, X – wartość zmiennej przed standaryzacją, Z – wartość zmiennej po standaryzacji zmienna po standaryzacji ma rozkład normalny Z ~ N(0, 1) , czyli o średniej równej 0 i odchyleniu standardowym równym 1. Standaryzację stosuje się w celu wyrażenia zmiennych w tej samej skali np. w analizie skupień.