Kwadraty magiczne Autorzy: Magda Jóźwik Adrianna Prokop Kwadraty magiczne znane były Chińczykom i Hindusom przed paru tysiącami lat. Spotyka się amulety chińskie z kwadratami magicznymi, na których jeszcze nie ma cyfr, lecz są odpowiednie ilości nakłuć lub wydrążeń. Znane one były również Arabom w IX wieku naszej ery. Do Europy zaś wprowadził je, a przynajmniej pierwsze zasady ich zestawień wskazał Europejczykom, pewien Grek imieniem Moscopulos, który żył w Konstantynopolu w początkach XV stulecia. Kwadraty magiczne są to kwadraty rozbite na pewną ilość mniejszych kwadracików, czyli pól, w których liczby wypisuje się w ten sposób, że suma liczb w każdym poziomym rzędzie, w każdej pionowej kolumnie i na obu przekątnych jest taka sama. 4 9 2 3 5 7 8 1 6 Przedstawiony kwadrat znany był w Chinach już około 2200 roku p.n.e. Suma liczb w kolumnach, wierszach i na obu przekątnych wynosi w tym kwadracie magicznym 15. Najbardziej historycznym kwadratem magicznym w Europie nazwać można bez wątpienia ten, który widnieje na jednym z arcydzieł pędzla Albrechta Dürera zatytułowanym „Melancholia”. Jest to kwadrat złożony z 16 pól, a zestawiony tak pomysłowo, że dwie środkowe liczby dolnego rzędu dają rok powstania dzieła - 1514. 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1 Kwadrat nad skrzydłem anioła Kwadraty magiczne mają bardzo ciekawe właściwości: • Jeżeli wszystkie liczby, jakie zawiera kwadrat magiczny powiększymy lub zmniejszymy o jedną i tę samą liczbę to kwadrat pozostanie magiczny. Np. Do każdej liczby w kwadracie: 2 9 4 7 5 3 6 1 8 dodajemy po 17 i otrzymujemy kwadrat: 19 26 21 24 22 20 23 18 25 W pierwszym kwadracie suma magiczna, czyli suma liczb poszczególnych rzędów, kolumn oraz przekątnych, wynosi 15; w drugim kwadracie dodajemy do każdej liczby po 17 i suma magiczna wynosi: 15 317 66 • Jeżeli pomnożymy lub podzielimy wszystkie jego składniki przez jakąś liczbę to kwadrat pozostanie również magiczny. Np. każdą liczbę w kwadracie 19 26 21 24 22 20 23 18 25 mnożymy przez 2 i otrzymujemy kwadrat: 38 52 42 48 44 40 46 36 50 • Z dwóch kwadratów możemy otrzymać trzeci kwadrat magiczny przez sumowanie liczb stojących w analogicznych polach: 2 9 4 7 5 3 6 1 8 + 19 26 21 24 22 20 23 18 25 = 21 35 25 31 27 23 29 19 33 Suma magiczna takiego kwadratu równa się sumie sum magicznych obu składników, czyli 15 + 66 = 81. • Kwadrat pozostaje kwadratem magicznym jeżeli poprzestawiamy jego kolumny oraz szeregi leżące symetrycznie względem środka kwadratu. Na przykład: 14 7 1 12 12 7 1 14 5 10 16 9 4 6 15 15 4 6 9 15 4 6 8 13 11 2 2 13 11 8 2 13 11 8 3 10 16 5 5 10 16 3 12 7 1 14 3 9 W pierwszym z tych kwadratów przestawiliśmy kolumny pierwszą i czwartą; powstał kwadrat drugi, w którym zachowała się suma wyrazów w każdym wierszu i w każdej kolumnie, ale nie zachowała się suma na przekątnych. Jeśli teraz w drugim kwadracie przestawimy wiersze pierwszy i czwarty, to otrzymamy kwadrat trzeci, już doskonale magiczny. • Suma magiczna każdego kwadratu zestawionego z ciągu arytmetycznego, czyli ciągu kolejnych liczb różniących się między sobą o tę samą liczbę równa się połowie sumy pierwszego i ostatniego wyrazu pomnożonej przez liczbę podziałek boku kwadratu. Przykładem takiego kwadratu jest: 4 9 2 3 5 7 8 1 6 Składa się on z odpowiednio ustawionych liczb od 1 do 9 (zatem ustawione rosnąco różnią się między sobą o 1). Wykorzystując wymienioną własność możemy obliczyć sumę: 1 (1 9) 3 15 2 Istnieją kwadraty, w których możemy mówić o iloczynie magicznym. Kwadrat taki jest zbudowany z liczb naturalnych, tak, że każda z tych liczb jest większa od poprzedniej tyle samo razy, jeśli zostaną one ustawione rosnąco. Przykładem takiego kwadratu jest poniższy: 2 256 8 64 16 4 32 1 128 Iloczyn liczb zapisanych w każdej z kolumn, każdym z wierszy oraz na każdej przekątnej wynosi 4096.