klasyfikacja trójkątów

advertisement
KLASYFIKACJA
TRÓJKĄTÓW
W niniejszej prezentacji zostały
użyte następujące przyciski akcji:
Powrót do menu głównego
Powrót do slajdu poprzedniego.
Przejście do slajdu następnego.
Koniec prezentacji.
KLASYFIKACJA
TRÓJKĄTÓW
SPIS TREŚCI
 Definicja
trójkąta
 Zależności
między bokami trójkąta.
Suma miar kątów wewnętrznych trójkąta.
 Podział
trójkątów ze względu na kąty.
 Podział
trójkątów ze względu na boki.
 Podsumowanie.
 Test
sprawdzający wiadomości o trójkątach.
Definicja trójkąta
wierzchołek trójkąta
kąt trójkąta
bok trójkąta
Trójkąt to część
płaszczyzny ograniczona
łamaną zwyczajną
zamkniętą złożoną
z trzech odcinków, razem
z tą łamaną.
Każdy bok trójkąta jest mniejszy od
sumy dwóch pozostałych boków,
a większy od ich różnicy.
IABI<IBCI+ICAI i IABI>IBCI-ICAI
C
IBCI<IACI+IABI i IBCI>IACI-IABI

ICAI<IABI+IBCI i ICAI>IACI-IABI

A
B
Suma miar kątów wewnętrznych
dowolnego trójkąta jest równa
180°.
 +  +  = 180°
Podział trójkątów
ze względu na boki:
Trójkąt różnoboczny
Trójkąt równoramienny
Trójkąt równoboczny
Podział trójkątów
ze względu na kąty:
Trójkąt ostrokątny
Trójkąt prostokątny
Trójkąt rozwartokątny
Trójkąt różnoboczny
C

Trójkąt, który ma wszystkie
b
c


A
a
boki różnej długości.
B
Trójkąt równoramienny
C
Trójkąt, który ma

przynajmniej dwa boki
równej długości.

A

podstawa
Kąty przy podstawie
mają równe miary.
B
Trójkąt równoboczny
C
Trójkąt, który ma wszystkie
a
60°
A
60°
a
boki równej długości.
a
Każdy kąt ma 60°.
60°
B
Trójkąt równoboczny jest także
trójkątem równoramiennym.
Trójkąt ostrokątny
C

Trójkąt, który ma wszystkie
kąty wewnętrzne ostre.
 < 90
A


 < 90
B
 < 90
Trójkąt prostokątny
przyprostokątna
C
Trójkąt, który ma jeden

.
kąt wewnętrzny prosty.
ICABI = 90

A przyprostokątna
 < 90
B
 < 90
Trójkąt rozwartokątny
C
Trójkąt, który ma jeden
kąt wewnętrzny rozwarty.

 > 90
A


 < 90
B
 < 90
P o d s u m o w a n i e
Podział
Podział
wg boków
wg. kątów
ostrokątne
równoboczne równoramienne różnoboczne
a

 a
a
b


a
prostokątne nie istnieje
rozwartokątne
nie istnieje

a
a

.
b
a
b
a
b


b


a


b
c
c

.
b

a


a

c

a

Zadanie 1.
Suma miar kątów wewnętrznych trójkąta jest równa:
A. 90
B. 360
C. 180
D. 150
Zadanie 2.
W narysowanym trójkącie suma miar kątów ostrych jest
równa:
A. 180
C. 360
B. 35
D. 70
110°
Zadanie 3.
Kąt wewnętrzny trójkąta równobocznego ma:
D. 30
A. 90
B. 60
C. 120
Zadanie 4.
Kąt ostry trójkąta prostokątnego równoramiennego ma:
A. 60
C. 30
C. 45
Zadanie 5.
Nie istnieje trójkąt:
A. różnoboczny rozwartokątny
B. równoramienny prostokątny
C. różnoboczny ostrokątny
D. równoboczny prostokątny
D. 90
Zadanie 6.
Nie istnieje trójkąt o bokach długości:
A. 1 cm, 2 cm, 3 cm
B. 1 cm, 2 km, 2 km
C. 3 m, 5 m, 7 m
D. 300 cm, 50 dm, 7 m
Zadanie 7.
Wskaż zdanie prawdziwe:
A. Najdłuższy bok trójkąta prostokątnego to
przyprostokątna.
B. Każdy trójkąt równoramienny jest równoboczny.
C. Trójkąt może mieć dwa kąty rozwarte.
D. Każdy trójkąt równoboczny jest równoramienny.
Dobra odpowiedź.
Brawo!
Zastanów się
jeszcze raz!
Download