Dowolny Ostrokątny Rozwartokątny Równoboczny Prostokątny Równoramienny Podział trójkątów ze względu na boki różnoboczny (dowolny) Każdy bok ma inną długość i każdy kąt ma inną miarę. równoramienny równoboczny Ma dwa boki równe i nazywamy je Wszystkie boki ma ramionami. równej długości. Trzeci bok to Wszystkie kąty podstawa. wewnętrzne są Kąty przy równe i mają po podstawie mają tę 60°. samą miarę. Podział trójkątów ze względu na kąty Ostrokątny α < 90° β < 90° δ < 90° Każdy kąt wewnętrzny jest kątem ostrym. Prostokątny Rozwarty C = 90°, α < α < 90° β > 90° δ < 90° Ma jeden kąt prosty ,a dwa pozostałe są ostre i takie ,że Ma jeden kąt rozwarty ,a dwa pozostałe są ostre 90° i β < 90° α + β = 90° Trójkąt jest wielokątem o trzech bokach Suma miar kątów wewnętrznych trójkąta jest równa 180°. α + β + δ = 180°. Wysokości trójkąta Wysokością trójkąta nazywamy odcinek poprowadzony z wierzchołka trójkąta prostopadle do przeciwległego boku lub do przedłużenia tego boku. Każdy trójkąt ma trzy wysokości, które przecinają się w jednym punkcie zwanym ortocentrum (p.O). Środkowe boków trójkąta Środkową boku trójkąta nazywamy odcinkiem łączącym środek tego boku z przeciwległym bokiem tego trójkąta. Każdy trójkąt ma trzy środkowe przecinające się w jednym punkcie (p.S), który nazywamy środkiem ciężkości tego trójkąta. |DS| = |CD|, |ES| = |AE| oraz |FS| = |BF| Odcinki łączące środki boków trójkąta Odcinki łączące środki boków trójkąta są równoległe do przeciwległych boków i równe ich połowie. Dwusieczne kątów trójkąta Dwusieczna kąta jest to półprosta dzieląca kąt na połowy. Każdy trójkąt ma trzy dwusieczne przecinające się w jednym punkcie (p.O), który jest środkiem koła wpisanego w trójkąt. Symetralne boków trójkąta Symetralną boku trójkąta nazywamy prostą prostopadłą do tego boku, przechodzącą przez Jego środek. Każdy trójkąt ma trzy symetralne boków, przecinające się w jednym punkcie (p.O), który jest środkiem koła opisanego na tym trójkącie Środek O koła opisanego na trójkącie może leżeć wewnątrz lub na zewnątrz trójkąta, a w przypadku trójkąta prostokątnego na Jego boku (w połowie przeciwprostokątnej). Trójkąty nie mają środka symetrii. Trójkąt równoramienny ma jedną oś symetrii i jest ona jednocześnie dwusieczną kąta (δ) zawartego między ramionami oraz pokrywa się z wysokością figury, symetralną i środkową podstawy Trójkąt równoboczny ma trzy osie symetrii, które są jednocześnie dwusiecznymi kątów, wysokościami, symetralnymi i środkowymi boków figury. TWIERDZENIE PITAGORASA Jeżeli trójkąt jest prostokątny, to suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej. a2 + b2 = c2 TWIERDZENIE ODWROTNE DO TWIERDZENIA PITAGORASA Jeżeli w trójkącie o bokach długości a, b i c zachodzi równość a2 + b2 = c2, to trójkąt jest prostokątny. OKRĄG OPISANY NA TRÓJKACIE Na każdym trójkącie można opisać okrąg. Środkiem okręgu opisanego jest punkt przecięcia się symetralnych boków trójkąta. Trójkąt prostokątny Środek okręgu opisanego na trójkącie prostokątnym leży w połowie przeciwprostokątnej. Trójkąt równoboczny Środek okręgu opisanego na trójkącie równobocznym i środek okręgu wpisanego w trójkąt równoboczny pokrywają się. CECHY PODOBIEŃSTWA TRÓJKĄTÓW Własność, która pozwala na określenie podobieństwa pewnej rodziny figur, nazywa się cechą podobieństwa figur tej rodziny. Wyróżniamy trzy cechy podobieństwa trójkątów: I CECHA Jeżeli dwa kąty jednego trójkąta są przystające do odpowiednich kątów drugiego trójkąta, to trójkąty te są podobne. α1 = α2 oraz β1 = β2 II CECHA Jeżeli stosunki wszystkich boków jednego trójkąta do odpowiednich boków drugiego trójkąta są równe, to trójkąty są podobne. III CECHA oraz α1 = α Jeżeli stosunki dwóch boków jednego trójkąta do odpowiednich boków drugiego trójkąta są równe oraz kąty zawarte między tymi bokami są przystające (równe), to trójkąty te są podobne. Klasa 3 c gim.